Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A30
Number of page(s) 9
Published online 09 September 2015
  • Babcock, H.W. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J., 133, 527–587, 1961. [Google Scholar]
  • Beer, J., K.G. McCracken, and R. von Steiger. Cosmogenic Radionuclides: Theory and applications in the terrestrial and space environments, Berlin, Springer, 2012. [Google Scholar]
  • Beer, J., S. Tobias, and N. Weiss. An active sun throughout the maunder minimum. Sol. Phys., 181, 237–249, 1998. [Google Scholar]
  • Charbonneau, P., G. Beaubien, and C. St-Jean. Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J., 658, 657, 2007. [Google Scholar]
  • Clette, F., L. Svalgaard, J.M. Vaquero, and E.W. Cliver. Revisiting the sunspot number. Space Sci. Rev., 186, 35–103, 2014. [NASA ADS] [CrossRef] [Google Scholar]
  • Cliver, E.W., V. Boriakoff, and K.H. Bounar. The 22‐year cycle of geomagnetic and solar wind activity. J. Geophys. Res. [Space Phys.] (1978–2012), 101, 27091–27109, 1996. [CrossRef] [Google Scholar]
  • Cliver, E.W., and A.G. Ling. 22 Year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. Lett., 551, L189–L192, 2001, DOI: 10.1086/320022. [Google Scholar]
  • Gnevyshev, M., and A. Ohl. On the 22-year cycle of solar activity. Astron. Zh., 25, 18, 1948. [Google Scholar]
  • Hale, G.E., and S.B. Nicholson. The law of sun-spot polarity. Astrophys. J., 62, 270–300, 1925. [CrossRef] [Google Scholar]
  • Hoyt, D.V., and K.H. Schatten. Group sunspot numbers: A new solar activity reconstruction. Sol. Phys., 181, 491–512, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Jiang, J., R.H. Cameron, D. Schmitt, and M. Schüssler. The solar magnetic field since 1700-II. Physical reconstruction of total, polar and open flux. A&A, 528, A83, 2011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Jokipii, J.R., E.H. Levy, and W.B. Hubbard. Effects of particle drift on cosmic-ray transport. I – General properties, application to solar modulation. Astrophys. J., 213, 861–868, 1977, DOI: 10.1086/155218. [CrossRef] [Google Scholar]
  • Karoff, C., F. Inceoglu, M.F. Knudsen, J. Olsen, and A. Fogtmann-Schulz. The lost sunspot cycle: New support from 10Be measurements. A&A, 575, A77, 2014, DOI: 10.1051/0004-6361/201424927. [Google Scholar]
  • Krüger, H., H. Moraal, J. Bieber, J. Clem, P. Evenson, K. Pyle, M. Duldig, and J. Humble. A calibration neutron monitor: Energy response and instrumental temperature sensitivity. J. Geophys. Res., 113, A08101, 2008, DOI: 10.1029/2008JA013229. [Google Scholar]
  • Leussu, R., I.G. Usoskin, R. Arlt, and K. Mursula. Inconsistency of the Wolf sunspot number series around 1848. A&A, 559, A28, 2013, DOI: 10.1051/0004-6361/201322373. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Lockwood, M. Solar influence on global and regional climates. Surv. Geophys., 33, 503–534, 2012, DOI: 10.1007/s10712-012-9181-3. [Google Scholar]
  • Lockwood, M. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys., 10, 4, 2013, DOI: 10.12942/lrsp-2013-4. [Google Scholar]
  • Lockwood, M., and L. Barnard. An arch seen in the UK: a new catalogue of auroral observations made in the British Isles and Ireland, Astron. Geophys., 56, 4–25, 2015. [Google Scholar]
  • Lockwood, M., H. Nevanlinna, L. Barnard, M.J. Owens, R.G. Harrison, A.P. Rouillard, and C.J. Scott. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux. Ann. Geophys., 32, 383–399, 2014a, DOI: 10.5194/angeo-32-383-2014. [Google Scholar]
  • Lockwood, M., and M.J. Owens. Centennial variations in sunspot number, open solar flux and streamer belt width: 3. Modeling. J. Geophys. Res., 119, 5193–5209, 2014, DOI: 10.1002/2014JA019973. [Google Scholar]
  • Lockwood, M., M.J. Owens, and L. Barnard. Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J. Geophys. Res., 119, 5172–5182, 2014b, DOI: 10.1002/2014JA019970. [Google Scholar]
  • McCracken, K. Variations in the production of 10Be due to the 11 year modulation of the cosmic radiation, and variations in the vector geomagnetic dipole. Proc. Int. Conf. Cosmic Rays, 4129–4132, 2001. [Google Scholar]
  • McCracken, K.G., and J. Beer. The Annual Cosmic-radiation Intensities 1391–2014; the annual Heliospheric Magnetic Field Strengths 1391–1983; and identification of solar cosmic ray events in the cosmogenic record 1800–1983. Sol. Phys., 2015, in press. [Google Scholar]
  • Owens, M.J., and N.U. Crooker. Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res., 111, A10104, 2006, DOI: 10.1029/2006JA011641. [Google Scholar]
  • Owens, M.J., N.U. Crooker, and M. Lockwood. How is open solar magnetic flux lost over the solar cycle? J. Geophys. Res., 116, A04111, 2011a, DOI: 10.1029/2010JA016039. [Google Scholar]
  • Owens, M.J., and R.J. Forsyth. The heliospheric magnetic field. Living Rev. Sol. Phys., 10, 5, 2013, DOI: 10.12942/lrsp-2013-5. [Google Scholar]
  • Owens, M.J., and M. Lockwood. Cyclic loss of open solar flux since 1868: the link to heliospheric current sheet tilt and implications for the Maunder Minimum. J. Geophys. Res., 117, A04102, 2012, DOI: 10.1029/2011JA017193. [Google Scholar]
  • Owens, M.J., M. Lockwood, C.J. Davis, and L. Barnard. Solar cycle 24: implications for energetic particles and long-term space climate change. Geophys. Res. Lett., 38, L19106, 2011b, DOI: 10.1029/2011GL049328. [Google Scholar]
  • Owens, M.J., I. Usoskin, and M. Lockwood. Heliospheric modulation of galactic cosmic rays during grand solar minima: past and future variations. Geophys. Res. Lett., 39, L19102, 2012, DOI: 10.1029/2012GL053151. [Google Scholar]
  • Potgieter, M., and H. Moraal. A drift model for the modulation of galactic cosmic rays. Astrophys. J., 294, 425–440, 1985. [Google Scholar]
  • Riley, P., H. Moraal, H. Moraal, et al. Inferring the structure of the solar corona and inner heliosphere during the maunder minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys. J., 802, 105, 2015, DOI: 10.1088/0004-637X/802/2/105. [Google Scholar]
  • Roth, R., and F. Joos. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties. Climate of the Past, 9, 1879–1909, 2013. [Google Scholar]
  • Rouillard, A., and M. Lockwood. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding. Ann. Geophys., 22, 4381–4395, 2004, DOI: 1432-0576/ag/2004-22-4381. [CrossRef] [Google Scholar]
  • Solanki, S.K., M. Schüssler, and M. Fligge. Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature, 408, 445–447, 2000, DOI: 10.1038/35044027. [Google Scholar]
  • Steinhilber, F., J.A. Abreu, J. Beer, et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Science, 109, 5967–5971, 2012, DOI: 10.1073/pnas.1118965109. [Google Scholar]
  • Thomas, S.R., M.J. Owens, and M. Lockwood. The 22-year hale cycle in cosmic ray flux – evidence for direct heliospheric modulation. Sol. Phys., 289, 407–421, 2013, DOI: 10.1007/s11207-013-0341-5. [Google Scholar]
  • Usoskin, I., R. Arlt, E. Asvestari, et al. The Maunder minimum (1645–1715) was indeed a Grand minimum: A reassessment of multiple datasets. A&A, 2015, in press, DOI: 10.1051/0004-6361/201526652. [Google Scholar]
  • Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys., 10, 2013, DOI: 10.12942/lrsp-2013-1. [Google Scholar]
  • Usoskin, I.G., K. Mursula, R. Arlt, and G.A. Kovaltsov. A solar cycle lost in 1793–1800: Early sunspot observations resolve the old mystery. Astrophys. J. Lett., 700, L154, 2009. [Google Scholar]
  • Usoskin, I.G., K. Mursula, and G.A. Kovaltsov. Was one sunspot cycle lost in late XVIII century? A&A, 370, L31–L34, 2001. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Usoskin, I.G., K. Mursula, and G.A. Kovaltsov. Lost sunspot cycle in the beginning of Dalton minimum: New evidence and consequences. Geophys. Res. Lett., 29, 2183, 2002. [Google Scholar]
  • Waldmeier, M. The beginning of a new cycle of solar activity. Nature, 253, 419, 1975. [CrossRef] [Google Scholar]
  • Wolf, R.A. Abstracts of his latest results, Mon. Not. R. Astron. Soc., 21, 77, 1861. [CrossRef] [Google Scholar]
  • Zolotova, N., and D. Ponyavin. Enigma of the solar cycle 4 still not resolved. Astrophys. J., 736, 115, 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.