Open Access
J. Space Weather Space Clim.
Volume 5, 2015
Article Number A35
Number of page(s) 9
Published online 23 November 2015
  • Abdu, M.A. Equatorial ionosphere–thermosphere system: Electrodynamics and irregularities. Adv. Space Res., 35 (5), 771–787, 2005, DOI: 10.1016/j.asr.2005.03.150. [CrossRef] [Google Scholar]
  • Amm, O. Ionospheric elementary current systems in spherical coordinates and their application. J. Geomagn. Geoelectr., 49, 949–955, 1997, DOI: 10.5636/jgg.49.947. [CrossRef] [Google Scholar]
  • Amm, O., and A. Viljanen. Ionospheric disturbance magnetic field continuation from the ground to ionosphere using spherical elementary current systems. Earth, Planets and Space, 51, 431–440, 1999, DOI: 10.1186/BF03352247. [CrossRef] [Google Scholar]
  • Balasis, G., I.A. Daglis, C. Papadimitriou, M. Kalimeri, A. Anastasiadis, and K. Eftaxias. Dynamical complexity in Dst time series using nonextensive Tsallis entropy. Geophys. Res. Lett., 35, L14102, 2008, DOI: 10.1029/2008GL034743. [CrossRef] [Google Scholar]
  • Balasis, G., I.A. Daglis, C. Papadimitriou, M. Kalimeri, A. Anastasiadis, and K. Eftaxias. Investigating dynamical complexity in the magnetosphere using various entropy measures. J. Geophys. Res., 114, A00D06, 2009, DOI: 10.1029/2008JA014035. [Google Scholar]
  • Barbosa, C.S., D.S. Ferreira, M.A. do Espírito Santo, and A.R. Papa. Statistical analysis of geomagnetic field reversals and their consequences. Physica A: Statistical Mechanics and its Applications, 392, 6554–6560, 2013, DOI: 10.1016/j.physa.2013.08.025. [CrossRef] [Google Scholar]
  • Barbosa, C.S., G.A. Hartmann, and K.J. Pinheiro. Numerical modeling of geomagnetically induced currents in a Brazilian transmission line. Adv. Space Res., 55 (4), 1168–1179, 2015, DOI: 10.1016/j.asr.2014.11.008. [CrossRef] [Google Scholar]
  • Bolduc, L. GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys., 64, 1793–1802, 2002, DOI: 10.1016/S1364-6826(02)00128-1. [CrossRef] [Google Scholar]
  • Bologna, M.S., A.L. Padilha, and I. Vitorello. Geophysical signature of the deep lithosphere underlying the Alto Paranaíba igneous province: constraining upper mantle properties. Rev. Bras. Geocienc., 31, 471–474, 2001. [Google Scholar]
  • Boteler, D. Methodology for simulation of geomagnetically induced currents in power systems. J. Space Weather Space Clim., 4, A21, 2014, DOI: 10.1051/swsc/2014018. [CrossRef] [EDP Sciences] [Google Scholar]
  • Boteler, D.H., and R.J. Pirjola. Comparison of methods for modelling geomagnetically induced currents. Ann. Geophys., 32, 1177–1187, 2014, DOI: 10.5194/angeo-32-1177-2014. [CrossRef] [Google Scholar]
  • Boteler, D.H., and R.J. Pirjola. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet. Geophys. J. Int, 132, 31–40, 1998, DOI: 10.1046/j.1365-246x.1998.00388.x. [CrossRef] [Google Scholar]
  • Caraballo, R., L.S. Bettucci, G. Tancredi. Geomagnetically induced currents in the Uruguayan high-voltage power grid. Geophys. J. Int., 195, 844–853, 2013, DOI: 10.1093/gji/ggt293. [CrossRef] [Google Scholar]
  • Cagniard, L. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18, 605–635, 1953, DOI: 10.1190/1.1437915. [CrossRef] [Google Scholar]
  • Denardini, C.M., L.C.A. Resende, J. Moro, M. Rockenbach, P.R. Fagundes, M.A. Gende, S.S. Chen, N.J. Schuch, and A. Petry. The South American K Index: Initial Steps from the Embrace Magnetometer Network, in: 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26–29 August, pp. 1901–1905, 2013, DOI: 10.1190/sbgf2013-391. [Google Scholar]
  • Ferreira, D.S., A.R. Papa, and R. Menezes. Small world picture of worldwide seismic events. Physica A: Statistical Mech. App., 408, 170–180, 2014, DOI: 10.1016/j.physa.2014.04.024. [CrossRef] [Google Scholar]
  • Gaunt, C.T., and G. Coetzee. Transformer failures in regions incorrectly considered to have low GIC-risk, in: Proceedings, Power Tech, 2007 IEEE, Lausanne, pp. 807–812, 2007, DOI: 10.1109/PCT.2007.4538419. [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. Wat is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994, DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef] [Google Scholar]
  • Kappenman, J.G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01, 2005. [Google Scholar]
  • Langlois, P., L. Bolduc, and M.C. Chouteau. Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Quebec, in 1993-94. J. Geomagn. Geoelectr., 48, 1033–1041, 1996. [CrossRef] [Google Scholar]
  • Lehtinen, M., and R.J. Pirjola. Currents produced in earthed conductor networks by geomagnetically induced electric fields. Ann. Geophys., 3, 479–484, 1985. [Google Scholar]
  • Leubner, M.P., and Z. Vörös. A nonextensive entropy approach to solar wind intermittency. Astophys. J., 618, 547–555, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu, C., L. Liu, and R. Pirjola. Geomagnetically induced currents in the high-voltage power grid in China. IEEE Transactions on Power Delivery, 24, 2368–2374, 2009, DOI: 10.1109/TPWRD.2009.2028490. [CrossRef] [Google Scholar]
  • Marshall, R.A., M. Dalzell, C.L. Waters, P. Goldthorpe, and E.A. Smith. Geomagnetically induced currents in the New Zealand power network. Space Weather, 10, S08003, 2012, DOI: 10.1029/2012SW000806. [CrossRef] [Google Scholar]
  • Marti, L., C. Yiu, A. Rezaei-Zare, and D. Boteler. Simulation of geomagnetically induced currents with piecewise layered-earth models. IEEE Transactions on Power Delivery, 29, 1886–1893, 2014. [CrossRef] [Google Scholar]
  • Myllys, M., A. Viljanen, Ø.A. Rui, and T.M. Ohnstad. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world. J. Space Weather Space Clim., 4, A10, 2014. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pandey, S., and S. Dubey. Characteristic features of large geomagnetic storms observed during solar cycle 23. Indian J. Radio Space Phys., 38, 305–312, 2009. [Google Scholar]
  • Pirjola, R. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modelling. J. Atmos. Sol. Terr. Phys., 69, 1305–1311, 2007, DOI: 10.1016/j.jastp.2007.04.001. [CrossRef] [Google Scholar]
  • Pirjola, R. Review On The calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71–90, 2002. [CrossRef] [Google Scholar]
  • Pirjola, R., and A. Viljanen. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length. Ann. Geophys., 16, 1434–1444, 1998. [CrossRef] [Google Scholar]
  • Pulkkinen, A., R. Pirjola, and A. Viljanen. Statistics of extreme geomagnetically induced current events. Space Weather, 6, S07001, 2008, DOI: 10.1029/2008SW000388. [CrossRef] [Google Scholar]
  • Thomson, A.W.P., E.B. Dawson, and S.J. Reay. Quantifying extreme behavior in geomagnetic activity. Space Weather, 9, S10001, 2011, DOI: 10.1029/2011SW000696. [CrossRef] [Google Scholar]
  • Trivedi, N.B., I. Vitorello, W. Kabata, S.L.G. Dutra, A.L. Padilha, M.S. Bologna, M.B. de Pádua, M.P. Soares, G.S. Luz, F.A. Pinto, R. Pirjola, and A. Viljanen. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: a case study. Space Weather, 5, S04004, 2007, DOI: 10.1029/2006SW000282. [CrossRef] [Google Scholar]
  • Tsallis, C. Introduction to Non-extensive Statistical Mechanics: Approaching a Complex World, Springer, Berlin, 2009. [Google Scholar]
  • Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52, 479, 1988. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex. The extreme magnetic storm of 1-2 September 1859. J. Geophys. Res., 108, 1268, 2003, DOI: 10.1029/2002JA009504. [NASA ADS] [CrossRef] [Google Scholar]
  • Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, and T. Korja. BEAR Working Group. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models. Ann. Geophys., 22, 101–113, 2004. [CrossRef] [Google Scholar]
  • Watari, S., M. Kunitake, K. Kitamura, T. Hori, T. Kikuchi, et al. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather, 7, S03002, 2009, DOI: 10.1029/2008SW000417. [Google Scholar]
  • Zheng, K., D. Boteler, R.J. Pirjola, L.-G. Liu, R. Becker, L. Marti, S. Boutilier, and S. Guillon. Effects of system characteristics on geomagnetically induced currents. IEEE Trans. Power Delivery, 29, 890–898, 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.