Open Access
Issue
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A21
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2017021
Published online 27 September 2017
  • Alfonsi L, De Franceschi G, Perrone L. 2001. Long term trend in the high latitude ionosphere. Phys Chem Earth 26(5): 303–307. [CrossRef]
  • Alfonsi L, De Franceschi G, Perrone L, Materassi M. 2002. Long term-trends of the critical frequency of the F2-layer at northern and southern hemisphere. Phys Chem Earth 27(6–8): 607–612. [CrossRef]
  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. 2017. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15: 418–429, doi:10.1002/2016SW001593. [CrossRef]
  • Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ. 2008. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference, 18–21 August 2008, Honolulu, Hawaii, Paper AIAA 2008-6438, 19 pp., http://ccar.colorado.edu/muri/AIAA_2008-6438_JB2008_Model.pdf.
  • Bremer J. 1998. Trends in the ionospheric E and F regions over Europe. Ann Geophys 16: 986–996. [CrossRef]
  • Bremer J. 2001. Trends in the ionosphere derived from global ionosonde observations. Adv Space Res 28(7): 997–1006. [CrossRef]
  • Bremer J. 2008. Long-term trends in the ionospheric E and F1 regions. Ann Geophys 26: 1189–1197. [CrossRef]
  • Bruinsma S, Tamagnan D, Biancale R. 2004. Atmospheric density derived from CHAMP/STAR accelerometer observations. Planet Space Sci 52: 297–312. [CrossRef]
  • Chen CF, Reinisch BW, Scali JL, Huang X, Gamache RR, Buonsanto MJ, Ward BD. 1994. The accuracy of ionogram-derived N(h) profiles. Adv Space Res 14(12): 43–46. [CrossRef]
  • Cnossen I. 2014. The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere. J Space Weather Space Clim 4: A18. [CrossRef] [EDP Sciences]
  • Cnossen I, Franzke C. 2014. The role of the Sun in long-term change in the F2 peak ionosphere: New insights from EEMD and numerical modeling. J Geophys Res Space Phys 119: 8610–8623, doi:10.1002/2014JA020048. [CrossRef]
  • Danilov AD, Konstantinova AV. 2013. Trends in the F2 layer parameters at the end of the 1990s and the beginning of the 2000s. J Geophys Res Atmos 118, 5947–5964. [CrossRef]
  • Danilov AD, Konstantinova AV. 2014. Reduction of the atomic oxygen content in the upper atmosphere. Geomagn Aeronom 54: 224–229. [CrossRef]
  • Donaldson JK, Wellman TJ, Oliver WL. 2010. Long-term change in thermospheric temperature above Saint Santin. J Geophys Res 115: A11305, doi:10.1029/2010JA015346. [CrossRef]
  • Dudeney JR. 1974. A simple empirical method for estimating the height and semi-thickness of the F2-layer at the Argentine Islands, Graham Land, Sci. Rep., 88. Cambridge, UK: British Antarctic Surv.
  • Emmert JT. 2015. Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. J Geophys Res Space Phys 120: 2940–2950, doi:10.1002/2015JA021047. [CrossRef]
  • Hedin AE. 1987. MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662. [NASA ADS] [CrossRef]
  • Houghton JT, Ding Y, Groggs DJ, Noguer M, van der LindenPJ, Dai X, Maskell K, Johnson CA. 2001. Climate change: the scientific basis, contribution of WG I to the 3rd assessment report of the IPCC. Cambridge: Cambridge University Press.
  • Ivanov-Kholodny GS, Mikhailov AV. 1986. The prediction of ionospheric conditions. Dordrecht, Holland: D. Reidel Publishing Company.
  • Jarvis MJ, Jenkins B, Rodgers GA. 1998. Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling. J Geophys Res 103(A9): 20774–20787. [CrossRef]
  • Konstantinova AV, Danilov AD. 2015. Choice of series of initial data in deriving trends in the ionospheric F2-layer parameters. Geomagn Aeronom 55: 344–352. [CrossRef]
  • Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT, Jacobi C, Jarvis MJ, Nedoluha G, Portnyagin YuI, Ulich T. 2008. Emerging pattern of global change in the upper atmosphere and ionosphere. Ann Geophys 26: 1255–1268. [CrossRef]
  • Laštovička J, Solomon SC, Qian L. 2012. Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168: 113–145, doi:10.1007/s11214-011-9799-3. [CrossRef]
  • Mielich J, Bremer J. 2013. Long-term trends in the ionospheric F2 region with different solar activity indices. Ann Geophys 31: 291–303. [CrossRef]
  • Mikhailov AV. 2002. The geomagnetic control concept of the F2-layer parameter long-term trends. Phys Chem Earth 27: 595–606. [CrossRef]
  • Mikhailov AV. 2006. Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypotheses be reconciled? Ann Geophys 24: 2533–2541. [CrossRef]
  • Mikhailov AV. 2008. Ionospheric F1 layer long-term trends and the geomagnetic control concept. Ann Geophys 26: 3793–3803. [CrossRef]
  • Mikhailov AV, Marin D. 2000. Geomagnetic control of the foF2 long-term trends. Ann Geophys 18: 653–665. [CrossRef]
  • Mikhailov AV, Skoblin MG, Förster M. 1995. Daytime F2-layer positive storm effect at middle and lower latitudes. Ann Geophys 13: 532–540. [CrossRef]
  • Mikhailov AV, Marin D. 2001. An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Ann Geophys 19: 733–748. [CrossRef]
  • Mikhailov AV, Schlegel K. 2003. Geomagnetic storm effects at F1-layer heights from incoherent scatter observations. Ann Geophys 21: 583–596. [CrossRef]
  • Mikhailov AV, Perrone L. 2016a. Geomagnetic control of the midlatitude foF1 and foF2 long-term variations: physical interpretation using European observations. J Geophys Res 121: 7183–7192, doi:10.1002/2016JA022716. [CrossRef]
  • Mikhailov AV, Perrone L. 2016b. Thermospheric parameters long-term variations retrieved from ionospheric observations in Europe. J Geophys Res Space Phys 121: 11574–11583, doi:10.1002/2016JA023234. [CrossRef]
  • Ogawa Y, Motoba T, Buchert SC, Häggström I, Nozawa S. 2014. Upper atmosphere cooling over the past 33 years. Geophys Res Lett 41: 5629–5635, doi:10.1002/2014GL060591. [CrossRef]
  • Oliver WL, Holt JM, Zhang S-R, Goncharenko LP. 2014. Long-term trends in thermospheric neutral temperature and density above Millstone Hill. J Geophys Res Space Phys 119: 7940–7946, doi:10.1002/2014JA020311. [CrossRef]
  • Perrone L, Mikhailov AV. 2016. Geomagnetic control of the midlatitude foF1 and foF2 long-term variations: recent observations in Europe. J Geophys Res 121: 7193–7203, doi:10.1002/2016JA022715. [CrossRef]
  • Perrone L, Mikhailov AV. 2017. Long-term variations of exospheric temperature inferred from foF1 observations: a comparison to ISR Ti trend estimates. J Geophys Res 122: 7083–7092, doi:10.1002/2017JA024193. [CrossRef]
  • Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: statistical comparison and scientific issues. J Geophys Res 107: 1468, doi:10.1029/2002JA009430. [CrossRef]
  • Prölss GW. 1995. Ionospheric F-region storms. In: Volland H, ed. Handbook of atmospheric electrodynamics, Vol. 2. Boca Raton: CRC Press, pp. 195–248. [EDP Sciences]
  • Prölss GW. 2004. Physics of the Earth's space environment. Berlin Heidelberg: Springer-Verlag, pp. 513. [CrossRef]
  • Qian L, Solomon SC, Roble RG, Kane TJ. 2008. Model simulations of global change in the ionosphere. Geophys Res Lett 35: L07811, doi:10.1029/2007GL033156. [CrossRef]
  • Qian L, Burns AG, Solomon SC, Roble RG. 2009. The effect of carbon dioxide cooling on trends in the F2-layer ionosphere. J Atmos Solar-Terr Phys 71: 1592–1601. [CrossRef]
  • Reinisch BW, Galkin IA, Khmyrov G, Kozlov A, Kitrosser DF. 2004. Automated collection and dissemination of ionospheric data from the digisonde network. Adv Radio Sci 2: 241–247. [CrossRef]
  • Rishbeth H. 1990. A greenhouse effect in the ionosphere? Planet Space Sci 38: 945–948. [CrossRef]
  • RishbethH, Roble RG. 1992. Cooling of the upper atmosphere by enhanced greenhouse gases – modelling of thermospheric and ionospheric effects. Planet Space Sci 40: 1011–1026. [CrossRef]
  • Roble RG, Dickinson RE. 1989. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys Res Lett 16: 1441–1444. [CrossRef]
  • Roininen L, Laine M, Ulich T. 2015. Time-varying ionosonde trend: case study of Sodankyla hmF2 data 1957–2014. J Geophys Res Space Phys 120: 6851–6859, doi:10.1002/2015JA021176. [CrossRef]
  • Sharma S, Chandra H, Vyas GD. 1999. Long-term ionospheric trends over Ahmedabad. Geophys Res Lett 26: 433–436. [CrossRef]
  • Shimazaki T. 1955. World wide daily variations in the height of the maximum electron density in the ionospheric F2 layer. J Radio Res Labs Jpn 2: 85–97.
  • Shubin VN. 2015. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based digisonde observations. Adv Space Res 56: 916–928, doi:10.1016/j.asr.2015.05.029. [CrossRef]
  • Ulich Th, Turunen E. 1997. Evidence for long-term cooling of the upper atmosphere in ionosonde data. Geophys Res Lett 24: 1103–1106. [CrossRef]
  • Ulich T. 2000. Solar variability and long-term trends in the ionosphere. Sodankyla Geophys. Obs. Publ., No. 87.
  • Zhang S-R, Holt JM. 2013. Long-term ionospheric cooling: dependency on local time, season, solar activity, and geomagnetic activity. J Geophys Res 118: 3719–3730, doi:10.1002/jgra.50306. [CrossRef]
  • Zhang S-R, Holt JM, Erickson PJ, Goncharenko LP, Nicolls MJ, McCready M, Kelly J. 2016. Ionospheric ion temperature climate and upper atmospheric long-term cooling. J Geophys Res Space Phys 121: 8951–8968, doi:10.1002/2016JA022971. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.