Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2018003 | |
Published online | 20 February 2018 |
- Brueckner G, Delaboudiniere J-P, Howard R, Paswaters S, St Cyr O, Schwenn R, Lamy P, Simnett G, Thompson B, Wang D. 1998. Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys Res Lett 25: 3019–3022. [NASA ADS] [CrossRef] [Google Scholar]
- Burlaga LF, Lazarus AJ. 2000. Lognormal distributions and spectra of solar wind plasma fluctuations: Wind 1995–1998. J Geophys Res 105: 2357–2364. DOI:10.1029/1999JA900442. [NASA ADS] [CrossRef] [Google Scholar]
- Cargill PJ. 2004. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221: 135–149. DOI:10.1023/B:SOLA.0000033366.10725.a2. [CrossRef] [Google Scholar]
- Cargill P, Chen J, Spicer D, Zalesak S. 1995. Geometry of interplanetary magnetic clouds. Geophy Res Lett 22: 647–650. [CrossRef] [Google Scholar]
- Cash MD, Biesecker DA, Pizzo V, de Koning CA, Millward G, Arge CN, Henney CJ, Odstrcil D. 2015. Ensemble modeling of the 23 July 2012 coronal mass ejection. Space Weather 13: 611–625. DOI:10.1002/2015SW001232. [NASA ADS] [CrossRef] [Google Scholar]
- Colaninno RC, Vourlidas A, Wu CC. 2013. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J Geophys Res : Space Phys 118: 6866–6879. DOI:10.1002/2013JA019205. [Google Scholar]
- Coplan MA, Ipavich F, King J, Ogilvie KW, Roberts DA, Lazarus AJ. 2001. Correlation of solar wind parameters between SOHO and Wind. J Geophys Res: Space Phys 106: 18615–18624. DOI:10.1029/2000JA000459. [CrossRef] [Google Scholar]
- Daglis IA. 2001. Space storms, ring current and space-atmosphere coupling in space storms and space weather hazards. In: Proceedings of the NATO Advanced Study Institute on Space Storms and Space Weather Hazards, held in Hersonissos 19–29 June, 2000. Edited by Daglis IA, Crete, Greece: Kluwer Academic Publishers. [Google Scholar]
- Davies JA, Harrison RA, Perry CH, Möstl C, Lugaz N, et al. 2012. A self-similar expansion model for use in solar wind transient propagation studies. Astrophys J 750: 23. DOI:10.1088/0004-637/750/1/23. [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162: 1–37. DOI:10.1007/BF00733425. [Google Scholar]
- Ebert RW, McComas DJ, Elliott HA, Forsyth RJ, Gosling JT. 2009. Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J Geophys Res: Space Phys 114: A01109. DOI:10.1029/2008JA013631. [NASA ADS] [CrossRef] [Google Scholar]
- Falkenberg TV, Vennerstrom S, Taktakishvili A, Pulkkinen A, Brain DA, Delory GT, Mitchell D. 2010a. CMEs at Earth and Mars. AGU Fall Meeting Abstract. [Google Scholar]
- Falkenberg TV, Vršnak B, Taktakishvili A, Odstrcil D, MacNeice P, Hesse M. 2010b. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters. Space Weather 8: S06004. DOI:10.1029/2009SW000555. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, St. Cyr OC. 2000. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett 27: 145–148. DOI:10.1029/1999GL003639. [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Yashiro S, Kaiser ML, Howard RA. 2001. Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res: Space Phys 106: 29207–29217. DOI:10.1029/2001JA000177. [CrossRef] [Google Scholar]
- Hess P, Zhang J. 2015. Predicting CME ejecta and sheath front arrival at L1 with a data-constrained physical model. Astrophys J 812: 144. DOI:10.1088/0004-637X/812/2/144. [CrossRef] [Google Scholar]
- Howard TA, Tappin J. 2009. Reconstructing the 3-D structure and trajectory of ICMEs: physical and forecasting implications. AGU Fall Meeting Abstracts. [Google Scholar]
- Ipavich FM, Galvin AB, Lasley SE, Paquette JA, Hefti S, et al. 1998. Solar wind measurements with SOHO: the CELIAS/MTOF proton monitor. J Geophys Res 103: 17205–17214. DOI:10.1029/97JA02770. [NASA ADS] [CrossRef] [Google Scholar]
- Isavnin A. 2016. FRiED: a novel three-dimensional model of coronal mass ejections. Astrophys J 833: 267. DOI:10.3847/1538-4357/833/2/267. [NASA ADS] [CrossRef] [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, St. Cyr OC, Guhathakurta M, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136: 5–16. DOI:10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kleimann J. 2012. 4π odels of CMEs and ICMEs (Invited review). Sol Phys 281: 353–367. DOI:10.1007/s11207-012-9994-8. [Google Scholar]
- Lugaz N, Vourlidas A, Roussev II. 2009. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction. Ann Geophys 27: 3479–3488. DOI:10.5194/angeo-27-3479-2009. [CrossRef] [Google Scholar]
- Manoharan PK. 2006. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Sol Phys 235: 345–368. DOI:10.1007/s11207-006-0100-y. [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol Phys 290: 1775–1814. DOI:10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug RM, Goldstein BE. 2003. The three-dimensional solar wind around solar maximum. Geophys Res Lett 30: 1517. DOI:10.1029/2003GL017136. [NASA ADS] [CrossRef] [Google Scholar]
- Michalek G, Gopalswamy N, Chané E. 2002. Arrival time of coronal mass ejections. In Solar Variability: From Core to Outer Frontiers, vol. 506, pp. 177–180. [Google Scholar]
- Millward G, Biesecker D, Pizzo V, de Koning CA. 2013. An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11: 57–68. DOI:10.1002/swe.20024. [CrossRef] [Google Scholar]
- Möstl C, Davies JA. 2013. Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Sol Phys 285: 411–423. DOI:10.1007/s11207-012-9978-8. [Google Scholar]
- Möstl C, Rollett T, Lugaz N, Farrugia CJ, Davies JA, et al. 2011. Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys J 741: 34. DOI:10.1088/0004-637X/741/1/34. [CrossRef] [Google Scholar]
- Möstl C, Amla K, Hall JR, Liewer PC, De Jong EM, et al. 2014. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys J 787: 119. DOI:10.1088/0004-637X/787/2/119. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ. 1999. Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res 104: 28225–28240. DOI:10.1029/1999JA900319. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ, Linker JA, Riley P, Lionello R, Mikic Z. 2004. Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. J Atmos Sol Terr Phys 66: 1311–1320. Towards an Integrated Model of the Space Weather System, http://dx.doi.org/10.1016/j.jastp.2004.04.007. [Google Scholar]
- Owens M, Cargill P. 2004. Predictions of the arrival time of coronal mass ejections at 1 AU: an analysis of the causes of errors. Ann Geophys 22: 661–671. DOI:10.5194/angeo-22-661-2004. [Google Scholar]
- Owens MJ, Arge C, Spence HE, Pembroke A. 2005. An event-based approach to validating solar wind speed predictions: high-speed enhancements in the Wang-Sheeley-Arge model. J Geophys Res: Space Phys 110. [Google Scholar]
- Parsons A, Biesecker D, Odstrcil D, Millward G, Hill S, Pizzo V. 2011. Wang-Sheeley-ArgeEnlil cone model transitions to operations. Space Weather 9. DOI:10.1029/2011SW000663. [Google Scholar]
- Pizzo VJ, de Koning C, Cash M, Millward G, Biesecker DA, Puga L, Codrescu M, Odstrcil D. 2015. Theoretical basis for operational ensemble forecasting of coronal mass ejections. Space Weather 13: 676–697. DOI:10.1002/2015SW001221. [CrossRef] [Google Scholar]
- Robbins S, Henney CJ, Harvey JW. 2006. Solar wind forecasting with coronal holes. Sol Phys 233: 265–276. DOI:10.1007/s11207-006-0064-y. [NASA ADS] [CrossRef] [Google Scholar]
- Robbrecht E, Berghmans D. 2004. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron Astrophys 425: 1097–1106. DOI:10.1051/0004-6361:20041302. [CrossRef] [EDP Sciences] [Google Scholar]
- Rollett T, Möstl C, Isavnin A, Davies JA, Kubicka M, Amerstorfer UV, Harrison RA. 2016. ElEvoHI: a novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys J 824: 131. DOI:10.3847/0004-637X/824/2/131. [CrossRef] [Google Scholar]
- Rouillard AP, Davies JA, Forsyth RJ, Rees A, Davis CJ, et al. 2008. First imaging of corotating interaction regions using the STEREO spacecraft. Geophys Res Lett 35: L10110. DOI:10.1029/2008GL033767. [Google Scholar]
- Schrijver CJ, Siscoe GL. 2010. Heliophysics: space storms and radiation: causes and effects, Cambridge University Press, Cambridge, UK. [Google Scholar]
- Schwenn R. 1983. The average solar wind in the inner heliosphere: structures and slow variations. In: NASA Conference Publication, vol. 228 of NASA Conference Publication. [Google Scholar]
- Schwenn R. 2006. Space weather: the solar perspective. Living Rev Sol Phys 3: 2. DOI:10.12942/lrsp-2006-2. [CrossRef] [Google Scholar]
- Schwenn R, dal Lago A, Huttunen E, Gonzalez WD. 2005. The association of coronal mass ejections with their effects near the Earth. Ann Geophys 23: 1033–1059. DOI:10.5194/angeo-23-1033-2005. [Google Scholar]
- Sheeley NR, Walters JH, Wang Y-M, Howard RA. 1999. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J Geophys Res 104: 24739–24768. DOI:10.1029/1999JA900308. [Google Scholar]
- Shi T, Wang Y, Wan L, Cheng X, Ding M, Zhang J. 2015. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys J 691: 806–271. DOI:10.1088/0004-637X/806/2/271. [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86: 1–22. DOI:10.1023/A:1005082526237. [NASA ADS] [CrossRef] [Google Scholar]
- Taktakishvili A, Kuznetsova M, MacNeice P, Hesse M, Rastätter L, Pulkkinen A, Chulaki A, Odstrcil D. 2009. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7: S03004. DOI:10.1029/2008SW000448. [CrossRef] [Google Scholar]
- Thernisien A, Howard R, Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. Astrophys J 652: 763. [CrossRef] [Google Scholar]
- Thernisien A, Vourlidas A, Howard R. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256: 111–130. [CrossRef] [Google Scholar]
- Vršnak B, Gopalswamy N. 2002. Influence of the aerodynamic drag on the motion of interplanetary ejecta. J Geophys Res: Space Phys 107. [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007. Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Sol Phys 240: 315–330. DOI:10.1007/s11207-007-0285-8. [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol Phys 285: 295–315. DOI:10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Žic T, Taktakishvili A, Dumbović M, Möstl C, Veronig AM, Mays ML, Odstrčil D. 2014. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys J Suppl Ser 213: 21. DOI:10.1088/0067-0049/213/2/21. [CrossRef] [Google Scholar]
- Yurchyshyn V, Yashiro S, Abramenko V, Wang H, Gopalswamy N. 2005. Statistical distributions of speeds of coronal mass ejections. Astrophys J 619: 599, http://stacks.iop.org/0004-637X/619/i=1/a=599. [NASA ADS] [CrossRef] [Google Scholar]
- Žic T, Vršnak B, Temmer M. 2015. Heliospheric propagation of coronalmass ejections: drag-based model fitting. Astrophys J Suppl Ser 218: 32. DOI:10.1088/0067-0049/218/2/32. [CrossRef] [Google Scholar]
- Zhao X, Plunkett S, Liu W. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res: Space Phys 107. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.