Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
|
|
---|---|---|
Article Number | A26 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/swsc/2018012 | |
Published online | 17 April 2018 |
- Archontis V, Hood AW. 2012. Magnetic flux emergence: a precursor of solar plasma expulsion. A&A 537: A62. DOI:10.1051/0004-6361/201116956. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bisi MM, Jackson BV, Fallows RA, Tokumaru M, Jensen EA, Lee J, Harrison R, Hapgood MA, Wu C, Davies J. 2013. Using Interplanetary Scintillation (IPS) For Space-Weather Forecasting. AGU Fall Meeting Abstracts. [Google Scholar]
- Baker DN, Poh G, Odstrcil D, Arge CN, Benna M, et al. 2013. Solar wind forcing at Mercury: WSA-ENLIL model results. J Geophys Res (Space Phys) 118: 45–57. DOI:10.1029/2012JA018064. [Google Scholar]
- Cheng X, Zhang J, Liu Y, Ding MD. 2011. Observing flux rope formation during the impulsive phase of a solar eruption. ApJL 732: L25. DOI:10.1088/2041-8205/732/2/L25. [NASA ADS] [CrossRef] [Google Scholar]
- Chintzoglou G, Patsourakos S, Vourlidas A. 2015. Formation of magnetic flux ropes during a confined flaring well before the onset of a pair of major coronal mass ejections. ApJ 809: 34. DOI:10.1088/0004-637X/809/1/34. [NASA ADS] [CrossRef] [Google Scholar]
- Dewey RM, Baker DN, Anderson BJ, Benna M, Johnson CL, et al. 2015. Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA-ENLIL model with the Cone extension. J Geophys Res (Space Phys) 120: 5667–5685. DOI:10.1002/2015JA021194. [Google Scholar]
- D’Huys E, Seaton DB, Poedts S, Berghmans D. 2014. Observational characteristics of coronal mass ejections without low-coronal signatures. ApJ 795: 49. DOI:10.1088/0004-637X/795/1/49. [Google Scholar]
- Echim M, Lemaire J, Lie-Svendsen Ø. 2011. A review on solar wind modeling: Kinetic and fluid aspects. Surv Geophys 32: 1–70, DOI:10.1007/s10712-010-9106-y. [CrossRef] [Google Scholar]
- Falkenberg TV, Taktakishvili A, Pulkkinen A, Vennerstrom S, Odstrcil D, Brain D, Delory G, Mitchell D. 2011. Evaluating predictions of ICME arrival at Earth and Mars. Space Weather 9: S00E12, DOI:10.1029/2011SW000682. [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, St Cyr OC. 2000. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett 27: 145–148. [CrossRef] [Google Scholar]
- Gopalswamy N, Shimojo M, Lu W, Yashiro S, Shibasaki K, Howard RA. 2003. Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. ApJ 586: 562–578. DOI:10.1086/367614. [NASA ADS] [CrossRef] [Google Scholar]
- Hapgood MA. 2011. Towards a scientific understanding of the risk from extreme space weather. Adv Space Res 47: 2059–2072, DOI:10.1016/j.asr.2010.02.007. [CrossRef] [Google Scholar]
- Harrison RA, Davies JA, Biesecker D, Gibbs M. 2017. The application of heliospheric imaging to space weather operations: Lessons learned from published studies. Space Weather 15: 985–1003, DOI: 10.1002/2017SW001633. [CrossRef] [Google Scholar]
- Howard TA, DeForest CE. 2014. The Formation and launch of a coronal mass ejection flux rope: a narrative based on observations. ApJ 796: 33, DOI:10.1088/0004-637X/796/1/33. [NASA ADS] [CrossRef] [Google Scholar]
- Howard TA, Tappin SJ. 2009. Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 1. Review of Theory. Space Sci Rev 147: 31–54, DOI:10.1007/s11214-009-9542-5. [NASA ADS] [CrossRef] [Google Scholar]
- Hutton J, Morgan H. 2015. Erupting Filaments with Large Enclosing Flux Tubes as Sources of High-mass Three-part CMEs, and Erupting Filaments in the Absence of Enclosing Flux Tubes as Sources of Low-mass Unstructured CMEs. ApJ 813: 35, DOI:10.1088/0004-637X/813/1/35. [NASA ADS] [CrossRef] [Google Scholar]
- Jackson BV, Hick PP, Bisi MM, Clover JM, Buffington A. 2010. Inclusion of In-Situ Velocity 730 Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote- 731 Sensing Observations. Sol Phys 265: 245–256, DOI:10.1007/s11207-010-9529-0. [CrossRef] [Google Scholar]
- Jin M, Manchester WB, van der Holst B, Sokolov I, Tóth G, Mullinix RE, Taktakishvili A, Chulaki A, Gombosi TI. 2017. Data-constrained Coronal Mass Ejections in a Global Magnetohydrodynamics Model. ApJ 834: 173, DOI:10.3847/1538-4357/834/2/173. [CrossRef] [Google Scholar]
- Li LP, Zhang J. 2013. Eruptions of two flux ropes observed by SDO and STEREO. A&A 552: L11, DOI:10.1051/0004-6361/201221005. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Mackay DH, van Ballegooijen AA. 2006a. Models of the Large-Scale Corona. I. Formation, Evolution, and Liftoff of Magnetic Flux Ropes. ApJ 641: 577–589, DOI:10.1086/500425. [NASA ADS] [CrossRef] [Google Scholar]
- Mackay DH, van Ballegooijen AA. 2006b. Models of the Large-Scale Corona. II. Magnetic Connectivity and Open Flux Variation. ApJ 642: 1193–1204, DOI:10.1086/501043. [NASA ADS] [CrossRef] [Google Scholar]
- Mackay DH, Yeates AR, Bocquet F-X. 2016. Impact of an L5 Magnetograph on Nonpotential Solar Global Magnetic Field Modeling. ApJ 825: 131, DOI:10.3847/0004-637X/825/2/131. [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L. et al. 2015. Ensemble Modeling of CMEs Using the WSA-ENLIL+Cone Model. Sol Phys 290: 1775–1814, DOI:10.1007/s11207-015-0692-1. [CrossRef] [Google Scholar]
- Merkin VG, Lionello R, Lyon JG, Linker J, Török T, Downs C. 2016. Coupling of Coronal and Heliospheric Magnetohydrodynamic Models: Solution Comparisons and Verification. ApJ 831: 23, DOI:10.3847/0004-637X/831/1/23. [Google Scholar]
- Michalek G. 2006. An Asymmetric Cone Model for Halo Coronal Mass Ejections. Sol Phys 237: 101–118, DOI:10.1007/s11207-006-0075-8. [CrossRef] [Google Scholar]
- Millward G, Biesecker D, Pizzo V, Koning CA. 2013. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11: 57–68, DOI:10.1002/swe.20024. [CrossRef] [Google Scholar]
- Na H, Moon Y-J, Lee H. 2017. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections. ApJ 839: 82, DOI:10.3847/1538-4357/aa697c. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506, DOI:10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ. 1999a. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104: 483–492, DOI:10.1029/1998JA900019. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ. 1999b. Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J Geophys Res 104: 493–504, DOI:10.1029/1998JA900038. [Google Scholar]
- Odstrcil D, Smith Z, Dryer M. 1996. Distortion of the heliospheric plasma sheet by interplanetary shocks. Geophys Res Lett 23: 2521–2524, DOI:10.1029/96GL00159. [CrossRef] [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res (Space Phys) 109: A02116, DOI:10.1029/2003JA010135. [Google Scholar]
- Ouyang Y, Yang K, Chen PF. 2015. Is Flux Rope a Necessary Condition for the Progenitor of Coronal Mass Ejections? ApJ 815: 72, DOI:10.1088/0004-637X/815/1/72. [CrossRef] [Google Scholar]
- Pagano P, Mackay DH, Poedts S. 2013a. Effect of gravitational stratification on the propagation of a CME. A&A 560: A38, DOI:10.1051/0004-6361/201322036. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pagano P, Mackay DH, Poedts S. 2013b. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope. A&A 554: A77, DOI:10.1051/0004-6361/201220947. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pagano P, Mackay DH, Poedts S. 2014. Simulating AIA observations of a flux rope ejection. A&A 568: A120, DOI:10.1051/0004-6361/201424019. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pevtsov AA, Bertello L, MacNeice P, Petrie G. 2016. What if we had a magnetograph at Lagrangian L5? Space Weather 14: 1026–1031 DOI:10.1002/2016SW001471. [CrossRef] [Google Scholar]
- Porth O, Xia C, Hendrix T, Moschou SP, Keppens R. 2014. MPI-AMRVAC for Solar and Astrophysics. ApJS 214: 4, DOI:10.1088/0067-0049/214/1/4. [Google Scholar]
- Rollett T, Möstl C, Isavnin A, Davies JA, Kubicka M, Amerstorfer UV, Harrison RA. 2016. ElEvoHI: A Novel CME Prediction Tool for Heliospheric Imaging Combining an Elliptical Front with Drag-based Model Fitting. ApJ 824: 131, DOI:10.3847/0004-637X/824/2/131. [Google Scholar]
- Sachdeva N, Subramanian P, Colaninno R, Vourlidas A. 2015. CME Propagation: Where does Aerodynamic Drag Take Over? ApJ 809: 158, DOI:10.1088/0004-637X/809/2/158. [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE et al. 2015. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745–2807, DOI:10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14: 56–75, DOI:10.1002/2015SW001308. [CrossRef] [Google Scholar]
- Tappin SJ, Howard TA. 2009. Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 2. 792 Model and Data Comparison. Space Sci Rev 147: 55–87, DOI:10.1007/s11214-009-9550-5. [CrossRef] [Google Scholar]
- Török T, Kliem B. 2005. Confined and Ejective Eruptions of Kink-unstable Flux Ropes. ApJ 630: L97–L100, DOI:10.1086/462412. [CrossRef] [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space Weather Modeling Framework: A new tool for the space science community. J Geophys Res (Space Phys) 110: A12226, DOI:10.1029/2005JA011126. [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI. et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231: 870–903, DOI:10.1016/j.jcp.2011.02.006. [CrossRef] [Google Scholar]
- Tucker-Hood K, Scott C, Owens M, Jackson D, Barnard L, et al. 2015. Validation of a priori CME arrival predictions made using real-time heliospheric imager observations. Space Weather 13: 35–48, DOI:10.1002/2014SW001106. [CrossRef] [Google Scholar]
- Vourlidas A, Lynch BJ, Howard RA, Li Y. 2013. How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs. Sol Phys 284: 179–201, DOI:10.1007/s11207-012-0084-8. [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Sol Phys 285: 295–315, DOI:10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Žic T, Taktakishvili A, Dumbović M, Möstl C, Veronig AM, Mays ML. 2014. Heliospheric Propagation of Coronal Mass Ejections: Comparison of Numerical WSA-ENLIL+Cone Model and Analytical Drag-based Model. ApJS 213: 21, DOI:10.1088/0067-0049/213/2/21. [Google Scholar]
- Weinzierl M, Mackay DH, Yeates AR, Pevtsov AA. 2016a. The Possible Impact of L5 Magnetograms on Non-potential Solar Coronal Magnetic Field Simulations. ApJ 828: 102, DOI:10.3847/0004-637X/828/2/102. [CrossRef] [Google Scholar]
- Weinzierl M, Yeates AR, Mackay DH, Henney CJ, Arge CN. 2016b. A New Technique for the Photospheric Driving of Non-potential Solar Coronal Magnetic Field Simulations. ApJ 823: 55, DOI:10.3847/0004-637X/823/1/55. [Google Scholar]
- Xia C, Keppens R, Guo Y. 2014. Three-dimensional Prominence-hosting Magnetic Configurations: Creating a Helical Magnetic Flux Rope. ApJ 780: 130, DOI:10.1088/0004-637X/780/2/130. [Google Scholar]
- Xie H, Ofman L, Lawrence G. 2004. Cone model for halo CMEs: Application to space weather forecasting. J Geophys Res (Space Phys) 109: A03109, DOI:10.1029/2003JA010226. [Google Scholar]
- Xue XH, Wang CB, Dou XK. 2005. An ice-cream cone model for coronal mass ejections. J Geophys Res (Space Phys) 110: A08103, DOI:10.1029/2004JA010698. [Google Scholar]
- Yeates AR, Mackay DH, van Ballegooijen AA. 2007. Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations. Sol Phys 245: 87–107, DOI:10.1007/s11207-007-9013-7. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Mackay DH. 2009a. Initiation of Coronal Mass Ejections in a Global Evolution Model. ApJ 699: 1024–1037, DOI:10.1088/0004-637X/699/2/1024. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Mackay DH. 2009b. Initiation of Coronal Mass Ejections in a Global Evolution Model. ApJ 699: 1024–1037, DOI:10.1088/0004-637X/699/2/1024. [Google Scholar]
- Yeates AR, Mackay DH. 2012. Chirality of High-latitude Filaments over Solar Cycle 23. ApJ 753: L34, DOI:10.1088/2041-8205/753/2/L34. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Mackay DH, van Ballegooijen AA. 2008. Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison. Sol Phys 247: 103–121, DOI:10.1007/s11207-007-9097-0. [Google Scholar]
- Yeates AR, Attrill GDR, Nandy D, Mackay DH, Martens PCH, van Ballegooijen AA. 2010a. Comparison of a Global Magnetic Evolution Model with Observations of Coronal Mass Ejections. ApJ 709: 1238–1248, DOI:10.1088/0004-637X/709/2/1238. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Mackay DH, van Ballegooijen AA, Constable JA. 2010b. A nonpotential model for the Sun’s open magnetic flux. J Geophys Res (Space Phys) 115: A09112, DOI:10.1029/2010JA015611. [Google Scholar]
- Zhao X, Dryer M. 2014. Current status of CME/shock arrival time prediction. Space Weather 12: 448–469, DOI:10.1002/2014SW001060. [CrossRef] [Google Scholar]
- Žic T, Vršnak B, Temmer M. 2015. Heliospheric Propagation of Coronal Mass Ejections: Drag-based Model Fitting. ApJS 218: 32, DOI:10.1088/0067-0049/218/2/32. [Google Scholar]
- Zuccarello FP, Aulanier G, Gilchrist SA. 2015. Critical Decay Index at the Onset of Solar Eruptions. ApJ 814: 126, DOI:10.1088/0004-637X/814/2/126. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.