Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A25 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2018004 | |
Published online | 17 April 2018 |
- Abramenko VI. 2005. Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys J 629: 1141–1149. DOI:10.1086/431732. [NASA ADS] [CrossRef] [Google Scholar]
- Ahmed OW, Qahwaji R, Colak T, Higgins PA, Gallagher PT, Bloomfield DS. 2013. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Sol Phys 283: 157–175. DOI:10.1007/s11207-011-9896-1. [Google Scholar]
- Al-Ghraibah A, Boucheron LE, McAteer RTJ. 2015. An automated classification approach to ranking photospheric proxies of magnetic energy build-up. A&A 579: A64. DOI:10.1051/0004-6361/201525978. [CrossRef] [EDP Sciences] [Google Scholar]
- Bamba Y, Kusano K, Yamamoto TT, Okamoto TJ. 2013. Study on the triggering process of solar flares based on Hinode/SOT observations. Astrophys J 778: 48. DOI:10.1088/0004-637X/778/1/48. [NASA ADS] [CrossRef] [Google Scholar]
- Bamba Y, Leka KD, Barnes G, Kusano K. 2018. Photospheric magnetic field properties of flaring vs. flare-quiet active regions. V: on the triggering by emerging flux. Astrophys J in prep. [Google Scholar]
- Barnes G, Leka KD. 2006. Photospheric magnetic field properties of flaring vs. flare-quiet active regions III: magnetic charge topology models. Astrophys J 646: 1303–1318. DOI:10.1086/504960. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes G, Leka KD. 2008. Evaluating the performance of solar flare forecasting methods. Astrophys J Lett 688: L107–L110. DOI:10.1086/595550. [Google Scholar]
- Barnes G, Longcope DW, Leka KD. 2005. Implementing a magnetic charge topology model for solar active regions. Astrophys J 629: 561–571. DOI:10.1086/431175. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes G, Leka KD, Schumer EA, Della-Rose DJ. 2007. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather 5: 9002. DOI:10.1029/2007SW000317. [Google Scholar]
- Barnes G, Birch AC, Leka KD, Braun DC. 2014. Helioseismology of pre-emerging active regions. III. Statistical analysis. Astrophys J 786: 19. DOI:10.1088/0004-637X/786/1/19. [Google Scholar]
- Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, et al. 2016. A comparison of flare forecasting methods, I: results from the “all-clear” Workshop. Astrophys J 829: 89. DOI:10.3847/0004-637X/829/2/89. [Google Scholar]
- Barnes G, Schanche N, Leka KD, Aggarwal A, Reeves K. 2017. A comparison of classifiers for solar energetic events. In: Brescia M, ed., Astroinformatics, vol. 325 of IAU Symposium, pp. 201–204. DOI:10.1017/S1743921316012758. [Google Scholar]
- Bloomfield DS, Higgins PA, McAteer RJ, Gallagher PT. 2012. Toward reliable benchmarking of solar flare forecasting methods. Astrophys J Lett 747: L41. DOI:10.1088/2041-8205. [Google Scholar]
- Bobra MG, Couvidat S. 2015. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys J 798: 135. DOI:10.1088/0004-637X/798/2/135. [Google Scholar]
- Bobra MG, Sun X, Hoeksema JT, Turmon M, Liu Y, Hayashi K, Barnes G, Leka KD. 2014. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches. Sol Phys 289: 3549–3578. DOI:10.1007/s11207-014-0529-3. [Google Scholar]
- Bornmann PL, Shaw D. 1994. Flare rates and the McIntosh active-region classifications. Sol Phys 150: 127–146. DOI:10.1007/BF00712882. [NASA ADS] [CrossRef] [Google Scholar]
- Centeno R, Schou J, Hayashi K, Norton A, Hoeksema JT, Liu Y, Leka KD, Barnes G. 2014. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Optimization of the Spectral Line Inversion Code. Sol Phys 289: 3531–3547. DOI:10.1007/s11207-014-0497-7. [NASA ADS] [CrossRef] [Google Scholar]
- Colak T, Qahwaji R. 2009. Automated Solar Activity Prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7: S06001. DOI:10.1029/2008SW000401. [NASA ADS] [CrossRef] [Google Scholar]
- Culhane JL, Harra LK, James AM, Al-Janabi K, Bradley LJ, et al. 2007. The EUV imaging spectrometer for Hinode. Sol Phys 243: 19–61. DOI:10.1007/s01007-007-0293-1. [NASA ADS] [CrossRef] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162: 1–37. DOI:10.1007/BF00733425. [Google Scholar]
- Efron B, Gong G. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37: 36–48. [Google Scholar]
- Falconer D, Barghouty AF, Khazanov I, Moore R. 2011. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of Active-Region free magnetic energy. Space Weather 9: S04003. DOI:10.1029/2009SW000537. [NASA ADS] [CrossRef] [Google Scholar]
- Falconer DA, Moore RL, Barghouty AF, Khazanov I. 2012. Prior flaring as a complement to free magnetic energy for forecasting solar eruptions. Astrophys J 757: 32. DOI:10.1088/0004-637X. [CrossRef] [Google Scholar]
- Falconer DA, Moore RL, Barghouty AF, Khazanov I. 2014. MAG4 versus alternative techniques for forecasting active region flare productivity. Space Weather 12: 306–317. DOI:10.1002/2013SW001024. [NASA ADS] [CrossRef] [Google Scholar]
- Ferguson R, Komm R, Hill F, Barnes G, Leka KD. 2009. Subsurface flow properties of flaring versus flare-quiet active regions. In: Dikpati M, Arentoft T, González Hernández I, Lindsey C, Hill F, eds., Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, vol. 416 of Astronomical Society of the Pacific Conference Series, p. 127. [Google Scholar]
- Filella I, Serrano L, Serra J, Peñuela J. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and Discriminant Analysis. Crop Sci 35: 1400–1405. DOI:10.2135/cropsci1995.0011183x003500050023x. [CrossRef] [Google Scholar]
- Gallagher P, Moon YJ, Wang H. 2002. Active-region monitoring and flare forecasting. Sol Phys 209: 171–183. [NASA ADS] [CrossRef] [Google Scholar]
- Georgoulis MK, Rust DM. 2007. Quantitative forecasting of major solar flares. Astrophys J Lett 661: L109–L112. DOI:10.1086/518718. [Google Scholar]
- Hills M. 1966. Allocation rules and their error rates. J R Statist Soc B 28: 1–31. [Google Scholar]
- Hill F, Bolding J, Toner C, Corbard T, Wampler S, Goodrich B, Goodrich J, Eliason P, Hanna KD. 2003. The GONG++ data processing pipeline. In: Sawaya-Lacoste H, ed., GONG+ 2002. Local and Global Helioseismology: The Present And Future, vol. 517 of ESA Special Publication, pp. 295–298. [Google Scholar]
- Hoeksema JT, Liu Y, Hayashi K, Sun X, Schou J, et al. 2014. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Sol Phys 289: 3483–3530. DOI:10.1007/s11207-014-0516-8. [NASA ADS] [CrossRef] [Google Scholar]
- Jolliffe IT, Stephenson D, 2003, Forecast verification: a practioner’s guide in atmospheric science, Wiley, Chichester, England. [Google Scholar]
- Jombart T, Devillard S, Balloux F. 2010. Discriminant Analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94. DOI:10.1186/1471-2156-11-94. https://doi.org/10.1186/1471-2156-11-94. [CrossRef] [Google Scholar]
- Kendall M, Stuart A, Ord JK, 1983, The advanced theory of statistics, 4th edn., Macmillan Publishing Co. Inc, New York, vol. 3. [Google Scholar]
- Klecka WR, 1980, Disciminant analysis, Sage Publications, Newbury Park. [Google Scholar]
- Komm R, Ferguson R, Hill F, Barnes G, Leka KD. 2011. Subsurface vorticity of flaring versus flare-quiet active regions. Sol Phys 268: 389–406. DOI:10.1007/s11207-010-9552-1. [NASA ADS] [CrossRef] [Google Scholar]
- Kosugi T, Matsuzaki K, Sakao T, Shimizu T, Sone Y, et al. 2007. The Hinode (Solar-B) mission: an overview. Sol Phys 243: 3–17. DOI:10.1007/s11207-007-9014-6. [Google Scholar]
- Kusano K, Bamba Y, Yamamoto TT, Iida Y, Toriumi S, Asai A. 2012. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys J 760: 31. DOI:10.1088/0004-637X/760/1/31. [NASA ADS] [CrossRef] [Google Scholar]
- LaBonte B. 2004. The imaging vector magnetograph at Haleakala: III. Effects of instrumental scattered light on stokes spectra. Sol Phys 221: 191–207. DOI:10.1023/B:SOLA.0000035052.58297.36. [CrossRef] [Google Scholar]
- LaBonte BJ, Mickey DL, Leka KD. 1999. The imaging vector magnetograph at Haleakal – II. Reconstruction of stokes spectra. Sol Phys 189: 1–24. [NASA ADS] [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2003a. Photospheric magnetic field properties of flaring vs. flare-quiet active regions I: data, general analysis approach, and sample results. Astrophys J 595: 1277–1295. [NASA ADS] [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2003b. Photospheric magnetic field properties of flaring vs. flare-quiet active regions II: Discriminant Analysis. Astrophys J 595: 1296–1306. [NASA ADS] [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2007. Photospheric magnetic field properties of flaring vs. flare-quiet active regions. IV: a statistically significant sample. Astrophys J 656: 1173–1186. DOI:10.1086/510282. [NASA ADS] [CrossRef] [Google Scholar]
- Leka KD, Barnes G. 2017. Solar flare forecasting: present methods and challenges. In: Buzulukova N, ed., Extreme Events in Geospace: Origins, Predictability, Consequences, chap. 3, Elsevier, first edn., ISBN 9780128127001. [Google Scholar]
- Leka KD, Barnes G, Crouch A. 2009. An automated ambiguity-resolution code for hinode/sp vector magnetic field data. In: Lites B, Cheung M, Magara T, Mariska J, Reeves K, eds., The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding, vol. 415 of Astronomical Society of the Pacific Conference Series, 365. [Google Scholar]
- Leka KD, Mickey DL, Uitenbroek H, Wagner EL, Metcalf TR. 2012. The imaging vector magnetograph at Haleakal IV: stokes polarization spectra in the Sodium D1 589.6 nm spectral line. Sol Phys 278: 471–485. DOI:10.1007/s11207-012-9958-z. [CrossRef] [Google Scholar]
- Leka KD, Barnes G, Birch AC, Gonzalez-Hernandez I, Dunn T, Javornik B, Braun DC. 2013. Helioseismology of pre-emerging active regions. I. Overview, data, and target selection criteria. Astrophys J 762: 130. DOI:10.1088/0004-637X. [Google Scholar]
- Leka KD, Barnes G, Wagner EL. 2017. Evaluating (and improving) estimates of the solar radial magnetic field component from line-of-sight magnetograms. Sol Phys 292: 36. DOI:10.1007/s11207-017-1057-8. [CrossRef] [Google Scholar]
- Lu ET, Hamilton RJ. 1991. Avalanches and the distribution of solar flares. Astrophys J Lett 380: L89–L92. DOI:10.1086/186180. [NASA ADS] [CrossRef] [Google Scholar]
- Mason JP, Hoeksema JT. 2010. Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys J 723: 634–640. DOI:10.1088/0004-637X/723/1/634. [NASA ADS] [CrossRef] [Google Scholar]
- McIntosh PS. 1990. The classification of sunspot groups. Sol Phys 125: 251–267. [NASA ADS] [CrossRef] [Google Scholar]
- Mickey DL, Canfield RC, Labonte BJ, Leka KD, Waterson MF, Weber HM. 1996. The imaging vector magnetograph at Haleakala. Sol Phys 168: 229–250. DOI:10.1007/BF00148052. [NASA ADS] [CrossRef] [Google Scholar]
- Murray, SA, Bingham S, Sharpe M, Jackson DR. 2017. Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15: 577–588. 10.1002/2016SW001579. [CrossRef] [Google Scholar]
- Nishizuka N, Sugiura K, Kubo Y, Den M, Watari S, Ishii M. 2017. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms. Astrophys J 835: 156. DOI:10.3847/1538-4357/835/2/156. [CrossRef] [Google Scholar]
- Pesnell W. 2008. The solar dynamics observatory: your eye on the sun. In: 37th COSPAR Scientific Assembly, vol. 37 of COSPAR, Plenary Meeting, p. 2412. [Google Scholar]
- Régnier S. 2012. Magnetic Energy Storage and Current Density Distributions for Different Force-Free Models. Sol Phys 277: 131–151. DOI:10.1007/s11207-011-9830-6. [NASA ADS] [CrossRef] [Google Scholar]
- Reinard AA, Henthorn J, Komm R, Hill F. 2010. Evidence that temporal changes in solar subsurface helicity precede active region flaring. Astrophys J Lett 710: L121–L125. DOI:10.1088/2041-8205. [Google Scholar]
- Sawyer C, Warwick JW, Dennett JT, 1986, Solar flare prediction, Colorado Assoc. Univ. Press, Boulder, CO. [Google Scholar]
- Scherrer PH, Bogart RS, Bush RI, Hoeksema JT, Kosovichev AG, et al. 1995. The solar oscillations investigation – michelson doppler imager. Sol Phys 162: 129–188. DOI:10.1007/BF00733429. [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol Phys 275: 207–227. DOI:10.1007/s11207-011-9834-2. [NASA ADS] [CrossRef] [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol Phys 275: 229–259. DOI:10.1007/s11207-011-9842-2. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ. 2007. A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys J Lett 655: L117–L120. DOI: 10.1086/511857. [CrossRef] [Google Scholar]
- Schrijver CJ, Higgins PA. 2015. A Statistical Study of Distant Consequences of Large Solar Energetic Events. Sol Phys 290: 2943–2950. DOI:10.1007/s11207-015-0785-x. [CrossRef] [Google Scholar]
- Schuck PW, Antiochos SK, Leka KD, Barnes G. 2016. Achieving consistent Doppler measurements from SDO/HMI vector field inversions. Astrophys J 823: 101. DOI: 10.3847/0004-637X/823/2/101. [CrossRef] [Google Scholar]
- Silverman BW, 1986, Density estimation for statistics and data analysis, Chapman and Hall, London. [Google Scholar]
- Solovyev VV, Salamov AA, Lawrence CB. 1994. Predicting internal exons by oligonucleotide composition and Discriminant Analysis of spliceable open reading frames. Nucleic Acids Res 22: 5156–5163. DOI:10.1093/nar/22.24.5156. http://dx.doi.org/10.1093/nar/22.24.5156. [CrossRef] [Google Scholar]
- Steenburgh R, Balch C. 2017. Private communication. [Google Scholar]
- Strugarek A, Charbonneau P, Joseph R, Pirot D. 2014. Deterministically driven avalanche models of solar flares. Sol Phys 289: 2993–3015. DOI:10.1007/s11207-014-0509-7. [CrossRef] [Google Scholar]
- Tsuneta S, Ichimoto K, Katsukawa Y, Nagata S, Otsubo M, et al. 2008. The Solar Optical Telescope for the Hinode mission: an overview. Sol Phys 249: 167–196. DOI:10.1007/s11207-008-9174-z. [Google Scholar]
- Welsch BT, Li Y, Schuck PW, Fisher GH. 2009. What is the relationship between photospheric flow fields and solar flares ? Astrophys J 705: 821–843. DOI: 10.1088/0004-637X/705/1/821. [NASA ADS] [CrossRef] [Google Scholar]
- Wheatland MS. 2005. A statistical solar flare forecast method. Space Weather 3: S07003. DOI:10.1029/2004SW000131. [NASA ADS] [CrossRef] [Google Scholar]
- Winter LM, Balasubramaniam K. 2015. Using the maximum X-ray flux ratio and X-ray background to predict solar flare class. Space Weather 13: 286–297. DOI:10.1002/2015SW001170. [NASA ADS] [CrossRef] [Google Scholar]
- Woodcock F. 1976. The evaluation of yes/no forecasts for scientific and administrative purposes. Mon Weather Rev 104: 1209–1214. DOI:10.1175/1520-0493(1976)104. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.