Issue
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
Article Number A22
Number of page(s) 14
DOI https://doi.org/10.1051/swsc/2018017
Published online 17 April 2018
  • Akasofu SI. 1981. Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling function epsilon. Planet Space Sci 29: 1151–1158. [CrossRef] [Google Scholar]
  • Amata E, Pallocchia G, Consolini G, Marcucci MF, Bertello I. 2008. Comparison between three algorithms for Dst predictions over the 2003–2005 period. J Atmos Solar-Terr Phys 70: 496–502. [CrossRef] [Google Scholar]
  • Andriyas T, Andriyas S. 2015. Relevance vector machines as a tool for forecasting geomagnetic storms during years 1996–2007. J Atmos Solar-Terr Phys 125: 10–20. [CrossRef] [Google Scholar]
  • Bala R, Reiff P. 2012. Improvements in short-term forecasting of geomagnetic activity. Space Weather 10: S06001. [CrossRef] [Google Scholar]
  • Boynton RJ, Balikhin MA, Billings SA, Amariutei OA. 2013. Application of nonlinear autoregressive moving average exogenous input models to geospace: advances in understanding and space weather forecasts. Ann Geophys 31: 1579–1589. [CrossRef] [Google Scholar]
  • Boynton RJ, Balikhin MA, Billings SA, Sharma AS, Amariutei OA. 2011. Data derived NARMAX Dst model. Ann Geophys 29: 965–971. [CrossRef] [Google Scholar]
  • Burton RK, McPherron RL, Russell CT. 1975. An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80: 4204–4214. [Google Scholar]
  • Caswell JM. 2014. A nonlinear autoregressive approach to statistical prediction of disturbance storm time geomagnetic fluctuations using solar data. J Signal Inf Process 5: 42–53. [Google Scholar]
  • Chen J, Slinker SP, Triandaf I. 2012. Bayesian prediction of geomagnetic storms: wind data, 1996–2010. Space Weather 10: S04005. [CrossRef] [Google Scholar]
  • Echer E, Gonzalez WD, Tsurutani BT, Gonzalez ALC. 2008. Interplanetary conditions causing intense geomagnetic storms (Dst ≤ − 100 nT) during solar cycle 23. J Geophys Res 113: A05221. [Google Scholar]
  • Echer E, Tsurutani BT, Gonzalez WD. 2013. Interplanetary origins of moderate (100 nT < Dst ≤ − 50 nT) geomagnetic storms during solar cycle 23 (1996Â-2008). J Geophys Res: Space Phys 118: 385–392. [CrossRef] [Google Scholar]
  • Gonzalez WD, Echer E. 2005. A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms. Geophys Res Lett 32: L18103. [CrossRef] [Google Scholar]
  • Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM. 1994. What is a geomagnetic storm? J Geophys Res 99: 5771–5792. [NASA ADS] [CrossRef] [Google Scholar]
  • Ji EY, Moon YJ, Gopalswamy N, Lee DH. 2012. Comparison of Dst forecast models for intense geomagnetic storms. J Geophys Res (Space Phys) 117: A03209. [Google Scholar]
  • Kane RP, Echer E. 2007. Phase shift (time) between storm-time maximum negative excursions of geomagnetic disturbance index Dst and interplanetary Bz. J Atmos Sol Terr Phys 69: 1009–1020. [CrossRef] [Google Scholar]
  • Katus RM, Liemohn MW, Ionides EL, Ilie R, Welling D, Sarno-Smith LK. 2015. Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J Geophys Res: Space Phys 120: 310–327. [CrossRef] [Google Scholar]
  • Lundstedt H, Gleisner H, Wintoft P. 2002. Operational forecasts of the geomagnetic Dst index. Geophys Res Lett 29: 2181. [Google Scholar]
  • Mansilla GA. 2008. Solar wind and IMF parameters associated with geomagnetic storms with Dst ≤−50 nT. Phys Scr 78: 045902. [CrossRef] [Google Scholar]
  • Nikolaeva NS, Yermolaev YI, Lodkina IG. 2014. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams: 4. Simulation for magnetic clouds. Geomagn Aeron 54: 152–161. [CrossRef] [Google Scholar]
  • O'Brien TP, McPherron RL. 2000a. An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay. J Geophys Res 105: 7707–7720. [CrossRef] [Google Scholar]
  • O'Brien TP, McPherron RL. 2000b. Forecasting the ring current index Dst in real time. J Atmos Sol Terr Phys 62: 1295–1299. [Google Scholar]
  • Pallocchia G, Amata E, Consolini G, Marcucci MF, Bertello I. 2006. Geomagnetic Dst index forecast based on IMF data only. Ann Geophys 24: 989–999. [CrossRef] [Google Scholar]
  • Petrukovich AA, Klimov SI. 2000. The use of solar wind measurements for the analysis and prediction of geomagnetic activity. Cosm Res 38: 433. [Google Scholar]
  • Petrukovich AA, Klimov SI, Lazarus A, Lepping RP. 2001. Comparison of the solar wind energy input to the magnetosphere measured by Wind and Interball-1. J Atmos Solar-Terr Phys 63: 1643–1647. [CrossRef] [Google Scholar]
  • Podladchikova TV, Petrukovich AA. 2012. Extended geomagnetic storm forecast ahead of available solar wind measurements. Space Weather 10: S07001. [CrossRef] [Google Scholar]
  • Rastätter L, Kuznetsova MM, Glocer A, Welling D, Meng X et al. 2013. Geospace environment modeling 2008Â-2009 challenge: Dst index. Space Weather 11: 187–205. [CrossRef] [Google Scholar]
  • Rathore BS, Dinesh CG, Parashar KK. 2014. A nonlinear autoregressive approach to statistical prediction of disturbance storm time geomagnetic fluctuations using solar data. J Signal Inf Process 5: 42–53. [Google Scholar]
  • Revallo M, Valach F, Hejda P, Bochníček J. 2014. A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction. J Atmos Sol-Terr Phys 110: 9–14. [Google Scholar]
  • Sharifie J, Lucas C, Araabi B. 2006. Locally linear neurofuzzy modeling and prediction of geomagnetic disturbances based on solar wind conditions. Space Weather 4: S06003. [CrossRef] [Google Scholar]
  • Siscoe G, McPherron RL, Liemohn MW, Ridley AJ, Lu G. 2005. Reconciling prediction algorithms for Dst. J Geophys Res 110: A02215. [Google Scholar]
  • Temerin M, Li X. 2002. A new model for the prediction of Dst on the basis of the solar wind. J Geophys Res 107: 1472. [CrossRef] [Google Scholar]
  • Temerin M, Li X. 2006. Dst model for 1995–2002. J Geophys Res 111: A04221. [CrossRef] [Google Scholar]
  • Valdivia JA, Sharma AS, Papadopoulos K. 1996. Prediction of magnetic storms by nonlinear models. Geophys Res Lett 23: 2899–2902. [CrossRef] [Google Scholar]
  • Vassiliadis D, Klimas A, Baker D. 1999. Models of Dst geomagnetic activity and of its coupling to solar wind parameters. Phys Chem Earth 24: 107–112. [Google Scholar]
  • Wei HL, Billings SA, Balikhin M. 2004. Prediction of the Dst index using multiresolution wavelet models. J Geophys Res 109: A07212. [Google Scholar]
  • Wing S, Johnson JR, Jen J, Meng CI, Sibeck DG, Bechtold K, Freeman J, Costello K, Balikhin M, Takahashi K. 2005. Kp forecast models. J Geophys Res (Space Phys) 110: A04203. [Google Scholar]
  • Wu JG, Lundstedt H. 1997. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J Geophys Res 102: 14255–14268. [Google Scholar]
  • Yermolaev YI, Nikolaeva NS, Lodkina IG, Yermolaev MY. 2010. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann Geophys 28: 2177–2186. [CrossRef] [Google Scholar]
  • Yermolaev YI, Yermolaev MY. 2002. Statistical relationships between solar, interplanetary, and geomagnetospheric disturbances, 1976–2000. Cosm Res 40: 1–14. [NASA ADS] [CrossRef] [Google Scholar]
  • Yermolaev YI, Yermolaev MY, Zastenker GN, Zelenyi LM, Petrukovich AA, Sauvaud JA. 2005. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review. Planet Space Sci 53: 189–186. [CrossRef] [Google Scholar]
  • Zhu D, Billings SA, Balikhin M, Wing S, Coca D. 2006. Data derived continuous time model for the Dst dynamics. Geophys Res Lett 33: L04101. [Google Scholar]
  • Zhu D, Billings SA, Balikhin MA, Wing S, Alleyne H. 2007. Multi-input data derived Dst model. Geophys Res Lett 112: A06205. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.