Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2018014 | |
Published online | 10 April 2018 |
- Abreu JA, Beer J, Steinhilber F, Tobias SM, Weiss NO. 2008. For how long will the current grand maximum of solar activity persist ? Geophys Res Lett 35: 2–5. DOI:10.1029/2008GL035442, http://www.agu.org/pubs/crossref/2008/2008GL035442.shtml. [CrossRef] [Google Scholar]
- Barnard L, Lockwood M. 2011. A survey of gradual solar energetic particle events. J Geophys Res 116: 1–13. DOI:10.1029/2010JA016133, http://www.agu.org/pubs/crossref/2011/2010JA016133.shtml. [CrossRef] [Google Scholar]
- Barnard L, Lockwood M, Hapgood MA, Owens MJ, Davis CJ, Steinhilber F. 2011. Predicting space climate change. Geophys Res Lett 38: 7–12. DOI:10.1029/2011GL048489. http://www.agu.org/pubs/crossref/2011/2011GL048489.shtml. [Google Scholar]
- Barnard L, Owens MJ, Scott CJ. 2017. The space environment before the space age. Astron Geophys 58: 2.12–2.16. DOI:10.1093/astrogeo/atx056. [CrossRef] [Google Scholar]
- Cannon P, Angling M, Barclay L, Curry C, Dyer C, et al. 2013. Extreme space weather : impacts on engineered systems and infrastructure. Tech Rep R Acad Eng www.raeng.org.uk/spaceweather, ISBN:1903496950. [Google Scholar]
- Clette F, Lefèvre L. 2016. The new sunspot number: assembling all corrections. Sol Phys 291: 2629–2651. DOI:10.1007/s11207-016-1014-y, http://arxiv.org/abs/1510.06928. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW. 2016. comparison of new and old sunspot number time series. Sol Phys (1994) 291, DOI:10.1007/s11207-016-0929-7. [Google Scholar]
- Dee M, Pope B, Miles D, Manning S, Miyake F. 2016. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 1006: 1–10. DOI:10.1017/RDC.2016.50, http://www.journals.cambridge.org/abstract_S0033822216000503. [Google Scholar]
- Dreschhoff GAM, Zeller EJ. 1990. Evidence of individual solar proton events in Antarctic snow. Sol Phys 127: 333–346. DOI:10.1007/BF00152172. [CrossRef] [Google Scholar]
- Duderstadt KA, Dibb JE, Jackman CH, Randall CE, Solomon SC, Mills MJ, Schwadron NA, Spence HE. 2014. Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event. J Geophys Res Atmos 119: 6938–6957. DOI:10.1002/2013JD021389. [CrossRef] [Google Scholar]
- Forbush SE. 1946. Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys Rev 70: 771–772. DOI:10.1103/PhysRev.70.771. [Google Scholar]
- Heikkilä U, Beer J, Feichter J. 2007. Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM General Circulation Model. Atmos Chem Phys Discuss 7: 15341–15372. DOI:10.5194/acpd-7-15341-2007, http://www.atmos-chem-phys-discuss.net/7/15341/2007/. [CrossRef] [Google Scholar]
- Holappa L, Mursula K, Asikainen T. 2014a. A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity. J Geophys Res Space Phys 119: 9407–9418. DOI:10.1002/2014JA020599. [Google Scholar]
- Holappa L, Mursula K, Asikainen T, Richardson IG. 2014b. Annual fractions of high-speed streams from principal component analysis of local geomagnetic activity. J Geophys Res Sp Phys 119: 4544–4555. DOI:10.1002/2014JA019958. [Google Scholar]
- Herbst K, Heber B, Beer J, Tylka A. 2015. Modelling the production of cosmogenic radionuclides due to galactic and solar cosmic rays. In: Proceedings of the 34th Int. Cosm. Ray Conf. of Science. vol. 236, https://pos.sissa.it/236/537/pdf. [Google Scholar]
- Kepko L, Spence HE, Smart DF, Shea MA. 2009. Interhemispheric observations of impulsive nitrate enhancements associated with the four large ground-level solar cosmic ray events (1940–1950). J Atmos Solar-Terr Phys 71: 1840–1845. DOI:10.1016/j.jastp.2009.07.002. http://adsabs.harvard.edu/abs/2009JASTP.71.1840K. [Google Scholar]
- Kilpua EKJ, Olspert N, Grigorievskiy A, Käpylä MJ, Tanskanen EI, Miyahara H, Kataoka R, Pelt J, Liu YD. 2015. Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. ApJ 806: 272. DOI:10.1088/0004-637X/806/2/272, http://stacks.iop.org/0004-637X/806/i=2/a=272?key=crossref.874e87f7ac81b1a48c1541d391970e36. [Google Scholar]
- Lefèvre L, Vennerstrøm S, Dumbović M, Vršnak B, Sudar D, Arlt R, Clette F, Crosby N. 2016. Detailed analysis of solar data related to historical extreme geomagnetic storms: 18682010. Sol Phys 291, DOI:10.1007/s11207-016-0892-3. [Google Scholar]
- Lockwood M, Stamper R, Wild MN. 1999. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature 399: 437–439. DOI:10.1038/20867. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard L, Davis CJ, Thomas S. 2012. Solar cycle 24: what is the Sun up to ? Astron Geophys 53: 3.09–3.15. DOI:10.1111/j.1468-4004.2012.53309.x. [Google Scholar]
- Lockwood M. 2013. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev Sol Phys 10: DOI:10.12942/lrsp-2013-4. [CrossRef] [Google Scholar]
- Lockwood, M, Barnard L, Nevanlinna H, Owens MJ, Harrison RG, Rouillard AP, Davis CJ. 2013a. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 year − part 1: a new geomagnetic data composite. Ann Geophys 31: 1957–1977. DOI:10.5194/angeo-31-1957-2013, http://www.ann-geophys.net/31/1957/2013/. [CrossRef] [Google Scholar]
- Lockwood M, Barnard L, Nevanlinna H, Owens MJ, Harrison RG, Rouillard AP, Davis CJ. 2013b. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 year − part 2: a new reconstruction of the interplanetary magnetic field. Ann Geophys 31: 1979–1992. DOI:10.5194/angeo-31-1979-2013, http://www.ann-geophys.net/31/1979/2013/. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Nevanlinna H, Barnard L, Owens MJ, Harrison RG, Rouillard AP, Scott CJ. 2014a. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 year − part 4: near-Earth solar wind speed, IMF, and open solar flux. Ann Geophys 32: 383–399. DOI:10.5194/angeo-32-383-2014, http://www.ann-geophys.net/32/383/2014/. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Nevanlinna H, Vokhmyanin M, Ponyavin DI, Sokolov S, Barnard L, Owens MJ, Harrison RG, Rouillard AP, Scott CJ. 2014b. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 year − Part 3: Improved representation of solar cycle 11. Ann Geophys 32: 367–381. DOI:10.5194/angeo-32-367-2014, http://www.ann-geophys.net/32/367/2014/. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard L, Usoskin IG. 2016a. An assessment of sunspot number data composites over 1845–2014. Astrophys J 824: 54. DOI:10.3847/0004-637X/824/1/54, http://stacks.iop.org/0004-637X/824/i=1/a=54?key=crossref.5961a0acc8d7b507dd06a81a140f33ff. [NASA ADS] [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016b. On the origins and timescales of geoeffective IMF. Space Weather 14: 406–432. DOI:10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Matthes K, Funke B, Anderson ME, Barnard L, Beer J, et al. 2016. Solar forcing for CMIP6 (v3.1). Geosci Model Dev Discuss 6: 1–82. DOI:10.5194/gmd-2016-91, http://www.geosci-model-dev-discuss.net/gmd-2016-91/. [CrossRef] [Google Scholar]
- McCracken KG. 2004. Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice. J Geophys Res 109: A04101, DOI:10.1029/2003JA010060. [Google Scholar]
- McCracken KG, Beer J. 2015. The annual cosmic-radiation intensities 1391–2014; the annual heliospheric magnetic field strengths 1391–1983, and identification of solar cosmic-ray events in the cosmogenic record 1800–1983. Sol Phys 290: 3051–3069. DOI:10.1007/s11207-015-0777-x. [NASA ADS] [CrossRef] [Google Scholar]
- McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF, Shea MA. 2001. Solar cosmic ray events for the period 1561–1994 1. Identification in polar ice, 1561–1950. J Geophys Res 106: 21,585–21,598. DOI:10.1029/2000JA000237, http://www.agu.org/pubs/crossref/2001/2000JA000237.shtml. [Google Scholar]
- Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in ad 774-775 from tree rings in Japan. Nature 486: 774–776. DOI:10.1038/nature11123. [Google Scholar]
- Miyake F, Masuda K, Nakamura T. 2013. Another rapid event in the carbon-14 content of tree rings. Nat Commun 4: 1748. DOI:10.1038/ncomms2783, http://www.ncbi.nlm.nih.gov/pubmed/23612289. [Google Scholar]
- Mursula K, Holappa L, Lukianova R. 2016. Seasonal solar wind speeds for the last 100 years: unique coronal hole structures during the peak and demise of the Grand Modern Maximum. Geophys Res Lett 44, DOI:10.1002/2016GL071573. [Google Scholar]
- Owens MJ, Lockwood M. 2012. Cyclic loss of open solar flux since 1868: the link to heliospheric current sheet tilt and implications for the Maunder Minimum. J Geophys Res Space Phys 117: 1–9. DOI:10.1029/2011JA017193. [Google Scholar]
- Owens MJ, McCracken KG, Lockwood M, Barnard L. 2015. The heliospheric Hale cycle over the last 300 years and its implications for a “lost” late 18th century solar cycle. J Space Weather Space Clim 5: A30. DOI:10.1051/swsc/2015032. [CrossRef] [Google Scholar]
- Owens MJ, Cliver EW, McCracken KG, Beer J, Barnard L, et al. 2016a. Near-Earth heliospheric magnetic field intensity since 1750. part 1: sunspot and geomagnetic reconstructions. J Geophys Res Space Phys 121, DOI:10.1002/2016JA022529. [Google Scholar]
- Owens MJ, Cliver EW, McCracken KG, Beer J, Barnard L, et al. 2016b. Near-Earth heliospheric magnetic field intensity since 1750. part 2: cosmogenic radionuclide reconstructions. J Geophys Res Space Phys 121, DOI:10.1002/2016JA022550. [Google Scholar]
- Shea MA, Smart DF, Dreschhoff GAM. 1999. Identification of major proton fluence events from nitrates in polar ice cores. Radiat Meas 30: 309–316. DOI:10.1016/S1350-4487(99)00057-8, http://linkinghub.elsevier.com/retrieve/pii/S1350448799000578. [CrossRef] [Google Scholar]
- Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M, et al. 2012. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci U.S.A. 109: 5967–5971. DOI:10.1073/pnas.1118965109, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3341045&tool=pmcentrez&rendertype=abstract. [NASA ADS] [CrossRef] [Google Scholar]
- Strauss RDT, Effenberger F. 2017. A hitch-hiker's guide to stochastic differential equations. Space Sci Rev 212, DOI:10.1007/s11214-017-0351-y. [Google Scholar]
- Svalgaard L. 2014. Errors in scale values for magnetic elements for Helsinki. (March). Ann Geophys 32, 633–641, DOI:10.5194/angeo-32-633-2014, http://arxiv.org/abs/1403.2707. [NASA ADS] [CrossRef] [Google Scholar]
- Svalgaard L, Cliver EW. 2005. The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J Geophys Res 110: 103. DOI:10.1029/2005JA011203. [Google Scholar]
- Svalgaard L, Cliver EW. 2010. Heliospheric magnetic field 1835–2009. J Geophys Res 115: 111. DOI:10.1029/2009JA015069, http://doi.wiley.com/10.1029/2009JA015069. [NASA ADS] [CrossRef] [Google Scholar]
- Thomas SR, Owens MJ, Lockwood M, Barnard L, Scott CJ. 2015. Near-Earth cosmic ray decreases associated with remote coronal mass ejections. ApJ 801: 5. DOI:10.1088/0004-637X/801/1/5, http://stacks.iop.org/0004-637X/801/i=1/a=5?key=crossref.2044e2d221606382f66ca6a2df3966e5. [CrossRef] [Google Scholar]
- Usoskin IG. 2013. A history of solar activity over millennia. Living Rev Sol Phys 10: DOI:10.12942/lrsp-2013-1, http://www.livingreviews.org/lrsp-2013-1. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxy data. ApJ 757: 92. DOI:10.1088/0004-637X/757/1/92, http://stacks.iop.org/0004-637X/757/i=1/a=92?key=crossref.8b9f2d4f1c17e9be6434333d4857e488. [Google Scholar]
- Usoskin IG, Solanki SK, Kovaltsov GA, Beer J, Kromer B. 2006. Solar proton events in cosmogenic isotope data. Geophys Res Lett 33: 2–5. DOI:10.1029/2006GL026059, http://www.agu.org/pubs/crossref/2006/2006GL026059.shtml. [Google Scholar]
- Usoskin IG, Kromer B, Ludlow F, Beer J, Friedrich M, Kovaltsov GA, Solanki SK, Wacker L. 2013. The AD775 cosmic event revisited: the Sun is to blame. A&A 552: L3. DOI:10.1051/0004-6361/201321080, http://www.aanda.org/10.1051/0004-6361/201321080. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vennerstrom S, Lefèvre L, Dumbović M, Crosby N, Malandraki OE, et al. 2016. Extreme geomagnetic storms − 18682010. Sol Phys 291, DOI:10.1007/s11207-016-0897-y. [Google Scholar]
- Vieira LEA, Solanki SK. 2010. Evolution of the solar magnetic flux on time scales of years to millenia. A&A 509: A100. DOI:10.1051/0004-6361/200913276. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wilks DS. 1995. Statistical methods in the atmospheric sciences. Academic Press, ISBN 978-0-12-751965–4. [Google Scholar]
- Wolff EW, Bigler M, Curran MAJ, Dibb JE, Frey MM, Legrand M, McConnell JR. 2012. The Carrington event not observed in most ice core nitrate records. Geophys Res Lett 39: 1–5. DOI:10.1029/2012GL051603, http://www.agu.org/pubs/crossref/2012/2012GL051603.shtml. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.