Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A32 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2018021 | |
Published online | 29 May 2018 |
- Araujo-Pradere EA. 2009. Transitioning space weather models into operations: the basic building blocks. Space Weather 7: S10006. DOI:10.1029/2009SW000524. [Google Scholar]
- Ban N, Schmidli J, Schär C. 2014. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res (Atmos) 119: 7889–7907. DOI:10.1002/2014JD021478. [Google Scholar]
- Barnes G, et al. 2016. A comparison of flare forecasting methods. I. Results from the all-clear workshop. Astrophys J 829: 89. DOI:10.3847/0004-637X/829/2/89. 1608.06319. [Google Scholar]
- Bauer P, Thorpe A, Brunet G. 2015. The quiet revolution of numerical weather prediction. Nature 525: 47–55. DOI:10.1038/nature14956. [CrossRef] [PubMed] [Google Scholar]
- Blaylock BK, Horel JD, Liston ST. 2017. Cloud archiving and data mining of high-resolution rapid refresh forecast model output. Comput Geosci 109: 43–50. DOI:10.1016/j.cageo.2017.08.005. [CrossRef] [Google Scholar]
- Bonadonna M, Lanzerotti L, Stailey J. 2017. The National Space Weather Program: two decades of interagency partnership and accomplishments. Space Weather 15: 14–25. DOI:10.1002/2016SW001523. [CrossRef] [Google Scholar]
- Buizza R, Leutbecher M. 2015. The forecast skill horizon. Q J R Meteorolog Soc 141: 3366–3382. DOI:10.1002/qj.2619. [CrossRef] [Google Scholar]
- Cash MD, Biesecker DA, Pizzo V, de Koning CA, Millward G, Arge CN, Henney CJ, Odstrcil D. 2015. Ensemble modeling of the 23 July 2012 coronal mass ejection. Space Weather 13: 611–625. DOI:10.1002/2015SW001232. [NASA ADS] [CrossRef] [Google Scholar]
- Chen X, Huang X, Jiao C, Flanner MG, Raeker T, Palen B. 2017. Running climate model on a commercial cloud computing environment. Comput Geosci 98: 21–25. DOI:10.1016/j.cageo.2016.09.014. [CrossRef] [Google Scholar]
- Courtier P, Thépaut J-N, Hollingsworth A. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorolog Soc 120: 1367–1387. DOI:10.1002/qj.49712051912. [Google Scholar]
- Cranmer SR, Gibson SE, Riley P. 2017. Origins of the ambient solar wind: implications for space weather. Space Sci Rev 212: 1345–1384. DOI:10.1007/s11214-017-0416-y. [Google Scholar]
- Deconinck W, et al. 2017. Atlas: a library for numerical weather prediction and climate modelling. Comput Phys Commun 220: 188–204. 10.1016/j.cpc.2017.07.006. [CrossRef] [Google Scholar]
- Düben PD, Dawson A. 2017. An approach to secure weather and climate models against hardware faults. J Adv Model Earth Syst 9: 501–513. DOI:10.1002/2016MS000816. [CrossRef] [Google Scholar]
- Düben PD, McNamara H, Palmer TN. 2014. The use of imprecise processing to improve accuracy in weather and climate prediction. J Comput Phys 271: 2–18. DOI:10.1016/j.jcp.2013.10.042. [CrossRef] [Google Scholar]
- Elvidge S, Godinez HC, Angling MJ. 2016. Improved forecasting of thermospheric densities using multi-model ensembles. Geosci Model Dev 9: 2279–2292. DOI:10.5194/gmd-9-2279-2016. [CrossRef] [Google Scholar]
- Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. 2016a. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9: 1937–1958. DOI:10.5194/gmd-9-1937-2016. [CrossRef] [Google Scholar]
- Eyring V, et al. 2016b. ESMValTool (v1.0) − a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geosci Model Dev 9: 1747–1802. DOI:10.5194/gmd-9-1747-2016. [CrossRef] [Google Scholar]
- Feng X, Zhong D, Xiang C, Zhang Y. 2013. GPU computing in space weather modeling. In: Pogorelov NV, Audit E, Zank GP, eds. Numerical Modeling of Space Plasma Flows (ASTRONUM2012), vol. 474 of Astronomical Society of the Pacific Conference Series, pp. 131. [Google Scholar]
- Fuhrer O, Osuna C, Lapillonne X, Gysi T, Cumming B, Bianco M, Arteaga A, Schulthess TC. 2014. Towards a performance portable, architecture agnostic implementation strategy for weather and climate models. Supercomput Frontiers Innovat 1: 45–62. DOI:10.14529/jsfi140103. [Google Scholar]
- Glocer A, et al. 2016. Community-wide validation of geospace model local K-index predictions to support model transition to operations. Space Weather 14: 469–480. DOI:10.1002/2016SW001387. [CrossRef] [Google Scholar]
- Gysi T, Osuna C, Fuhrer O, Bianco M, Schulthess TC. 2015. STELLA: a domain-specific tool for structured grid methods in weather and climate models. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '15. New York, NY, USA: ACM, pp. 41:1–41:12. DOI:10.1145/2807591.2807627, ISBN 978-1-4503-3723-6. [Google Scholar]
- Hickmann KS, Godinez HC, Henney CJ, Arge CN. 2015. Data assimilation in the ADAPT photospheric flux transport model. Solar Physics 290: 1105–1118. DOI:10.1007/s11207-015-0666-3. [Google Scholar]
- Horton W, Weigel RS, Sprott JC. 2001. Chaos and the limits of predictability for the solar-wind-driven magnetosphere-ionosphere system. Phys Plasmas 8: 2946–2952. DOI:10.1063/1.1371522. [CrossRef] [Google Scholar]
- Hourdin F, et al. 2017. The art and science of climate model tuning. Bull Am Meteorolog Soc 98: 589. DOI:10.1175/BAMS-D-15-00135.1. [CrossRef] [Google Scholar]
- IPCC. 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment Report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, DOI:10.1017/CBO9781107415324, www.climatechange2013.org., ISBN 978-1-107-66182-0. [Google Scholar]
- Jakob C. 2014. Going back to basics. Nat Clim Change 4: 1042–1045. DOI:10.1038/nclimate2445. [CrossRef] [Google Scholar]
- Knipp DJ. 2016. Advances in space weather ensemble forecasting. Space Weather 14: 52–53. DOI:10.1002/2016SW001366. [CrossRef] [Google Scholar]
- Lang, M, Browne P, van Leeuwen PJ, Owens M. 2017. Data assimilation in the solar wind: challenges and first results. Space Weather 15: 1490–1510. DOI:10.1002/2017SW001681. [CrossRef] [Google Scholar]
- Langhans W, Schmidli J, Schär C. 2012. Bulk Convergence of cloud-resolving simulations of moist convection over complex terrain. J Atmos Sci 69: 2207–2228. DOI:10.1175/JAS-D-11-0252.1. [CrossRef] [Google Scholar]
- Lapenta G, et al. 2013. SWIFF: space weather integrated forecasting framework. J Space Weather Space Clim 3: A05. DOI:10.1051/swsc/2013027. [CrossRef] [Google Scholar]
- Lathuillère C, Menvielle M, Lilensten J, Amari T, Radicella SM. 2002. From the Sun's atmosphere to the Earth's atmosphere: an overview of scientific models available for space weather developments. Ann Geophys 20: 1081–1104. DOI:10.5194/angeo-20-1081-2002. [CrossRef] [Google Scholar]
- Lee CO, Arge CN, Odstrčil D, Millward G, Pizzo V, Quinn JM, Henney CJ. 2013. Ensemble modeling of CME propagation. Sol Phys 285: 349–368. DOI:10.1007/s11207-012-9980-1. [NASA ADS] [CrossRef] [Google Scholar]
- Lee CO, Arge CN, Odstrcil D, Millward G, Pizzo V, Lugaz N. 2015. Ensemble modeling of successive halo cmes: a case study. Sol Phys 290: 1207–1229. DOI:10.1007/s11207-015-0667-2. [CrossRef] [Google Scholar]
- Leutbecher M, et al. 2017. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Q J R Meteorolog Soc 143, DOI:10.1002/qj.3094. [Google Scholar]
- Leutwyler D, Fuhrer O, Lapillonne X, Lüthi D, Schär C. 2016. Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19. Geosci Model Dev 9: 3393–3412. DOI:10.5194/gmd-9-3393-2016. [CrossRef] [Google Scholar]
- Lorenz EN. 1963. Deterministic non-periodic flow. J Atmos Sci 20: 130–148. DOI:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. [Google Scholar]
- Luhmann J, Mays ML, Odstrcil D, Bain H, Li Y, Leske R, Cohen C. 2015. Challenges in Forecasting SEP Events. In: AAS/AGU Triennial Earth-Sun Summit, vol. 1 of AAS/AGU Triennial Earth-Sun Summit, pp. 112.01. [Google Scholar]
- Mannucci AJ, Hagan ME, Vourlidas A, Huang CY, Verkhoglyadova OP, Deng Y. 2016. Scientific challenges in thermosphere-ionosphere forecasting − conclusions from the October 2014 NASA JPL community workshop. J Space Weather Space Clim 6: E01. DOI:10.1051/swsc/2016030. [CrossRef] [Google Scholar]
- Mays ML, et al. 2015. Ensemble Modeling of CMEs Using the WSA-ENLIL+Cone Model. Sol Phys 290: 1775–1814. DOI:10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- Meehl GA, et al. 2014. Decadal climate prediction: an update from the trenches. Bull Am Meteorolog Soc 95: 243–267. DOI:10.1175/BAMS-D-12-00241.1. [CrossRef] [Google Scholar]
- Michalakes J, Vachharajani M. 2008. GPU Acceleration of numerical weather prediction. Parallel Proc Lett 18: 531–548. DOI:10.1142/S0129626408003557. [Google Scholar]
- Molthan AL, Case JL, Venner J, Schroeder R, Checchi MR, Zavodsky BT, Limaye A, O’Brien RG. 2015. Clouds in the cloud: weather forecasts and applications within cloud computing environments. Bull Am Meteorolog Soc 96: 1369–1379. DOI:10.1175/BAMS-D-14-00013.1. [CrossRef] [Google Scholar]
- Murray SA, Bingham S, Sharpe M, Jackson DR. 2017. Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15: 577–588. DOI:10.1002/2016SW001579. [CrossRef] [Google Scholar]
- Murray SA, Henley EM, Jackson DR, Bruinsma SL. 2015. Assessing the performance of thermospheric modeling with data assimilation throughout solar cycles 23 and 24. Space Weather 13: 220–232. DOI:10.1002/2015SW001163. [CrossRef] [Google Scholar]
- Owens MJ, Riley P, Horbury TS. 2017. Probabilistic solar wind and geomagnetic forecasting using an analogue ensemble or “similar day” approach. Sol Phys 292: 69. DOI:10.1007/s11207-017-1090-7. [CrossRef] [Google Scholar]
- Palmer T. 2015. Modelling: build imprecise supercomputers. Nature 526: 32–33. DOI:10.1038/526032a. [CrossRef] [Google Scholar]
- Palmer TN. 2016. A personal perspective on modelling the climate system. Proc R Soc Lond Ser A 472: 20150772. DOI:10.1098/rspa.2015.0772. [CrossRef] [Google Scholar]
- Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ. 2008. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorolog Soc 89: 459. DOI:10.1175/BAMS-89-4-459. [CrossRef] [Google Scholar]
- Pizzo VJ, de Koning C, Cash M, Millward G, Biesecker DA, Puga L, Codrescu M, Odstrcil D. 2015. Theoretical basis for operational ensemble forecasting of coronal mass ejections. Space Weather 13: 676–697. DOI:10.1002/2015SW001221. [CrossRef] [Google Scholar]
- Prein AF, Rasmussen R, Stephens G. 2017. Challenges and advances in convection-permitting climate modeling. Bull Am Meteorolog Soc 98: 1027–1030. DOI:10.1175/BAMS-D-16-0263.1. [CrossRef] [Google Scholar]
- Pulkkinen, A, et al. 2013. Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather 11: 369–385. DOI:10.1002/swe.20056. [CrossRef] [Google Scholar]
- Rastätter L, Tóth G, Kuznetsova MM, Pulkkinen AA. 2014. CalcDeltaB: an efficient postprocessing tool to calculate ground-level magnetic perturbations from global magnetosphere simulations. Space Weather 12: 553–565. DOI:10.1002/2014SW001083. [CrossRef] [Google Scholar]
- Reinert D, Prill F, Frank H, Zängl G. 2017. I CON database reference manual. Tech. rep., Offenbach: Deutscher Wetterdienst, DOI:10.5676/DWD_pub/nwv/icon_1.1.12. [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14: 495–510. DOI:10.1002/2016SW001390. [CrossRef] [Google Scholar]
- Riley P, Baker D, Liu YD, Verronen P, Singer H, Güdel M. 2018. Extreme space weather events: from cradle to grave. Space Sci Rev 214: 21. DOI:10.1007/s11214-017-0456-3. [NASA ADS] [CrossRef] [Google Scholar]
- Schär C, Leuenberger D, Fuhrer O, Lüthi D, Girard C. 2002. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Weather Rev 130: 2459. DOI:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2. [CrossRef] [Google Scholar]
- Schmidt GA, Bader D, Donner LJ, Elsaesser GS, Golaz J-C, Hannay C, Molod A, Neale RB, Saha S. 2017. Practice and philosophy of climate model tuning across six US modeling centers. Geosci Model Dev 10: 3207–3223. DOI:10.5194/gmd-10-3207-2017. [CrossRef] [Google Scholar]
- Schrijver CJ, et al. 2015. Understanding space weather to shield society: a global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745–2807. DOI:10.1016/j.asr.2015.03.023. [NASA ADS] [CrossRef] [Google Scholar]
- Schunk RW, et al. 2014. Ensemble modeling with data assimilation models: a new strategy for space weather specifications, forecasts, and science. Space Weather 12: 123–126. DOI:10.1002/2014SW001050. [CrossRef] [Google Scholar]
- Shaw JA, Daescu DN. 2017. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation. J Comput Phys 343: 115–129. DOI:10.1016/j.jcp.2017.04.050. [CrossRef] [Google Scholar]
- Shimokawabe T, Aoki T, Onodera N. 2014. High-productivity framework on gpu-rich supercomputers for operational weather prediction code ASUCA. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14. Piscataway, NJ, USA: IEEE Press, pp. 251–261. DOI:10.1109/SC.2014.26. ISBN 978-1-4799-5500-8. [CrossRef] [Google Scholar]
- Sibley A, Biesecker D, Millward G, Gibbs M. 2012. Space weather, impacts and forecasting: an overview. Weather 67: 115–120. DOI:10.1002/wea.1915. [CrossRef] [Google Scholar]
- Simmons A, et al. 2016. Observation and integrated Earth-system science: a roadmap for 2016–2025. Adv Space Res 57: 2037–2103. DOI:10.1016/j.asr.2016.03.008. [CrossRef] [Google Scholar]
- Singh AK, Siingh D, Singh RP. 2010. Space weather: physics, effects and predictability. Surv Geophys 31: 581–638. DOI:10.1007/s10712-010-9103-1. [Google Scholar]
- Siscoe G. 2007. Space weather forecasting historically viewed through the lens of meteorology. In: Bothmer V, Daglis IA, eds. Space Weather- Physics and Effects. Springer, pp. 5–30. DOI:10.1007/978-3-540-34578-7_2. chap. 2. [CrossRef] [Google Scholar]
- Siuta D, West G, Modzelewski H, Schigas R, Stull R. 2016. Viability of cloud computing for real-time numerical weather prediction. Weather Forecast 31: 1985–1996. DOI:10.1175/WAF-D-16-0075.1. [CrossRef] [Google Scholar]
- Steenburgh RA, Biesecker DA, Millward GH. 2014. From predicting solar activity to forecasting space weather: practical examples of research-to-operations and operations-to-research. Sol Phys 289: 675–690. DOI:10.1007/s11207-013-0308-6. [CrossRef] [Google Scholar]
- Szintai B, Kaufmann P, Rotach MW. 2009. Deriving turbulence characteristics from the COSMO numerical weather prediction model for dispersion applications. Adv Sci Res 3: 79–84. DOI:10.5194/asr-3-79-2009. [CrossRef] [Google Scholar]
- Taylor KE, Stouffer RJ, Meehl GA. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorolog Soc 93: 485–498. DOI:10.1175/BAMS-D-11-00094.1. [Google Scholar]
- Tóth G, et al. 2005. Space Weather Modeling Framework: a new tool for the space science community. J Geophys Res (Space Phys) 110: A9. DOI:10.1029/2005JA011126. [Google Scholar]
- Tóth G, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231: 870–903. DOI:10.1016/j.jcp.2011.02.006. [NASA ADS] [CrossRef] [Google Scholar]
- Trémolet Y. 2006. Accounting for an imperfect model in 4D-Var. Q J R Meteorolog Soc 132: 2483–2504. DOI:10.1256/qj.05.224. [CrossRef] [Google Scholar]
- Tsagouri I, et al. 2013. Progress in space weather modeling in an operational environment. J Space Weather Space Clim 3: A17. DOI:10.1051/swsc/2013037. [CrossRef] [Google Scholar]
- Vanderbauwhede W, Takemi T. 2016. An analysis of the feasibility and benefits of GPU/multicore acceleration of the weather research and forecasting model. Concurr Comput Pract Exp 28: 2052–2072. DOI:10.1002/cpe.3522. [CrossRef] [Google Scholar]
- Wang C, Rosen IG, Tsurutani BT, Verkhoglyadova OP, Meng X, Mannucci AJ. 2016. Statistical characterization of ionosphere anomalies and their relationship to space weather events. J Space Weather Space Clim 6: A5. DOI:10.1051/swsc/2015046. [CrossRef] [Google Scholar]
- Watermann J, et al. 2009. Models of solar wind structures and their interaction with the Earth’s space environment. Space Sci Rev 147: 233–270. DOI:10.1007/s11214-009-9494-9. [CrossRef] [Google Scholar]
- Welling DT, Anderson BJ, Crowley G, Pulkkinen AA, Rastätter L. 2017. Exploring predictive performance: a reanalysis of the geospace model transition challenge. Space Weather 15: 192–203. DOI:10.1002/2016SW001505. [CrossRef] [Google Scholar]
- Zhang H, Pu Z. 2010. Beating the uncertainties: ensemble forecasting and ensemble-based data assimilation in modern numerical weather prediction. Adv Meteorol 432160: 10. DOI:10.1155/2010/432160. [Google Scholar]
- Zhao X, Dryer M. 2014. Current status of CME/shock arrival time prediction. Space Weather 12: 448–469. DOI:10.1002/2014SW001060. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.