Issue
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
Article Number A33
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2018019
Published online 07 June 2018
  • Araujo-Pradere EA, Fuller-Rowell TJ. 2002. STORM: An empirical storm-time ionospheric correction model, 2. Validation. Radio Sci 37: 1071. DOI:10.1029/2002RS002620 [Google Scholar]
  • Belehaki A, Tsagouri I. 2002. Investigation of the relative bottomside/topside contribution to the Total Electron Content estimates. Ann Geophysics 45: 73–86. [Google Scholar]
  • Bergeot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier JM, Defraigne P, Baire Q, Pottiaux E. 2013. The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim 3: A25. [Google Scholar]
  • Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell LA, Reinisch B. 2014. The International Reference Ionosphere 2012—a model of international collaboration. J Space Weather Space Clim 4, A07. [CrossRef] [Google Scholar]
  • Borries C, Berdermann J, Jakowski N, Wilken V. 2015. Ionospheric storms—A challenge for empirical forecast of the total electron content. J Geophys Res Space Phys 120: 3175–3186. DOI: 10.1002/2015JA020988 [CrossRef] [Google Scholar]
  • Buonsanto MJ. 1999. Ionospheric storms—A review. Space Sci Rev 88: 563–601. [CrossRef] [Google Scholar]
  • Constable C. 2016. Earth’s Electromagnetic Environment. Surv Geophys 37: 27–45. [CrossRef] [Google Scholar]
  • Ciraolo L. Ionospheric Total Electron Content (TEC) from the Global positioning System. URSI General Assembly Proceedings, New Delhi, 2005. http://www.ursi.org/proceedings/procGA05/pdf/GF1a.1(0926).pdf. [Google Scholar]
  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81: 111–120. [CrossRef] [Google Scholar]
  • Danilov AD. 2013. Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52: 343–66. [CrossRef] [Google Scholar]
  • Fuller-Rowell TJ, Codrescu MV, Wilkinson P. 2000. Quantitative modeling of the ionospheric response to geomagnetic activity. Ann Geophys 18: 766–781. [CrossRef] [Google Scholar]
  • Kalouptsidis N. Signal Processing Systems, John Wiley & Sons, New York, 1997 [Google Scholar]
  • Kelley MC, Makela JJ, Chau JL, Nicolls MJ. 2003. Penetration of the solar wind electric field into the magnetosphere/ionosphere system. Geophys Res Lett 30: 1158. DOI:10.1029/2002 [Google Scholar]
  • Knipp DJ, Biesecker DA. 2015. Changing of the guard: satellite will warn Earth of solar storms. Eos 96: DOI:2015EO026579, Published on 24 March 2015. [Google Scholar]
  • Koutroumbas K, Tsagouri I, Belehaki A. 2008. Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe. Ann Geophys 26: 371–386. [CrossRef] [Google Scholar]
  • Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44: RG4001. DOI: 10.1029/2005RG000193 [CrossRef] [Google Scholar]
  • Prölss GW. 1995. Ionospheric F region storms. In: H. Volland ed, Handbook of Atmospheric Electrodynamics, pp. 195–248, CRC Press, Boca Raton, Fla. [Google Scholar]
  • Prölss GW. 2011. Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy. Surv Geophys 32: 101–195. DOI: 10.1007/s10712-010-9104-0 [CrossRef] [Google Scholar]
  • Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). EPS 63: 377–381. DOI: 10.5047/eps.2011.03.001 [Google Scholar]
  • Richardson IG, Cane HV. 2010. Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Solar Phys 264: 189–237. [Google Scholar]
  • Rishbeth H. 1991. F-region storms and thermospheric dynamics. J Geomagn Geoelectr 43: 513. [Google Scholar]
  • Themelis K, Rontogiannis A, Koutroumbas K. 2012. A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing. IEEE Trans Signal Process 60: 585–599. [CrossRef] [Google Scholar]
  • Tsagouri I. 2011. Evaluation of the performance of DIAS ionospheric forecasting models. J Space Weather Space Clim 1: A02. [CrossRef] [Google Scholar]
  • Tsagouri I, Belehaki A. 2006. A new empirical model of middle latitude ionospheric response for space weather applications. Adv Space Res 37: 420–425. [CrossRef] [Google Scholar]
  • Tsagouri I, Belehaki A. 2008. An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response. J Atmospheric Solar-Terrestrial Phys 70: 2061–2076. [Google Scholar]
  • Tsagouri I, Belehaki A. 2015. Ionospheric forecasts for the European region for space weather applications, J Space Weather Space Clim 5: A9. [Google Scholar]
  • Tsagouri I, Belehaki A, Moraitis G, Mavromichalaki H. 2000. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys Res Lett 27: 3579–3582 [CrossRef] [Google Scholar]
  • Tsagouri I, Koutroumbas K, Belehaki A. 2009. Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters. Radio Sci 44: 1. [Google Scholar]
  • Tsagouri I, Belehaki A, Bergeot N, Cid C, Delouille V. et al. 2013. Progress in space weather modeling in an operational environment. J Space Weather Space Clim 3: A17. [CrossRef] [Google Scholar]
  • Tsagouri I, Galkin I, Asikainen T. 2017. Long-term changes in space weather effects on the Earth's ionosphere. Adv Space Res 59: 351–365. [CrossRef] [Google Scholar]
  • Tsurutani BT, Mannucci A, Iijima B, Abdu MA, Sobral JHA. et al. 2004. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109: A08302. DOI: 10.1029/2003JA010342 [Google Scholar]
  • Tsurutani BT, Verkhoglyadova OP, Mannucci AJ. et al. 2008. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J Geophys Res 113: A05311. DOI: 10.1029/2007JA012879 [Google Scholar]
  • Zhang DH, Zhang W, Li Q, Shi LQ, Hao YQ, Xiao Z. 2010. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Ann Geophys 28: 1571–1580. DOI: 10.5194-28-1571-2010 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.