Issue
J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A31
Number of page(s) 22
DOI https://doi.org/10.1051/swsc/2018010
Published online 29 May 2018
  • Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G, Fishman G, Kouveliotou C, Meegan C, Wilson R, Lestrade P. 1993. Batse observations of gamma-ray burst spectra. i - spectral diversity. Astrophys J 4131: 281–292. [CrossRef] [Google Scholar]
  • Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, Truscott P, Lei F, Jacobs C, Poedts S, Gabriel S, Sandberg I, Glover A, Hilgers A. 2015. Sepem: A tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. [CrossRef] [Google Scholar]
  • Daly EJ, Hilgers A, Drolshagen G, Evans HDR. 1996. Space environment analysis: Experience and trends. ESA Symposium on Environment Modelling for Space-based Applications, 15–22. [Google Scholar]
  • ECSS E-10-04C. April 2008. ECSS Space Environment Standard. Technical report, European Space Agency for the members of ECSS. [Google Scholar]
  • Feynman J, Gabriel SB. 2000. On space weather consequences and predictions. J Geophys Res 105: 10543–10564. [NASA ADS] [CrossRef] [Google Scholar]
  • Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. A new interplanetary fluence model. J Spacecr Rocket 274: 403–410. [Google Scholar]
  • Feynman J, Spitale G, Wang J, Gabriel SB. 1993. Interplanetary proton fluence model: Jpl 1991. J Geophys Res 98: 13281–13294. [CrossRef] [Google Scholar]
  • Feynman J, Ruzmaikin A, Berdichevsky V. 2002. The jpl proton fluence model: an update. J Atmos Sol Terr Phys 6416: 1679–1686. [Google Scholar]
  • Gabriel SB, Feynman J. 1996. Power-law distribution for solar energetic proton events. Sol Phys 1652: 337–346. [CrossRef] [Google Scholar]
  • Heynderickx D, Sandberg I, Jiggens P. 2017a. SEPEM Reference Data Set (RDS) v2.0. http://sepem.eu/help/SEPEM_RDS_v2-00.zip. [Google Scholar]
  • Heynderickx D, Sandberg I, P. Jiggens. 2017b. SEPEM Reference Data Set (RDS) v2.1. http://sepem.eu/help/SEPEM_RDS_v2-01.zip. [Google Scholar]
  • Jiggens P, Chavy-Macdonald M-A, Santin G, Menicucci H, Evans A, Hilgers A. 2014. The magnitude and effects of extreme solar particle events. J Space Weather Space Clim 4: A20. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jiggens P, Varotsou A, Truscott P, Heynderickx D, Lei F, Evans H, Daly E. 2018. The solar accumulated and peak proton and heavy ion radiation environment (SAPPHIRE) model. IEEE Trans Nucl Sci 652: 698–711. [Google Scholar]
  • Jiggens PTA, Gabriel SB. 2009. Time distributions of solar energetic particle events: Are SEPEs really random ? J Geophys Res 114: A10105. [CrossRef] [Google Scholar]
  • Jiggens PTA, Gabriel SB, Heynderickx D, Crosby N, Glover A, Hilgers A. 2012. ESA SEPEM Project: Peak flux and fluence model. IEEE Trans Nucl Sci 594: 1066–1077. [CrossRef] [Google Scholar]
  • Jun I, Swimm RT, Ruzmaikin A, Feynman J, Tylka AJ, Dietrich WF. 2007. Statistics of solar energetic particle events: Fluences, durations and time intervals. Adv Space Res 40: 304–312. [CrossRef] [Google Scholar]
  • King JH. 1974. Solar proton fluences for 1977-1983 space missions. J Spacecr Rocket 116: 401–408. [Google Scholar]
  • Lepreti F, Carbone V, Veltri P. 2001. Solar flare waiting time distribution: Varying rate-poisson of lévy function ? Astrophys J 555: L113–L136. [NASA ADS] [CrossRef] [Google Scholar]
  • Mewaldt RA, Looper MD, Cohen CMS, Mason GM, Haggerty DK, Desai MI, Labrador AW, Leske RA, Mazur JE. 2005. Solar-particle energy spectra during the large events of October-November 2003 and January 2005. 29th International Cosmic Ray Conference, 00: 101–104. [Google Scholar]
  • Nymmik RA. 1999. Probabilistic model for fluences and peak fluxes of solar energetic particles. Radiat Meas 303: 287–296. [CrossRef] [Google Scholar]
  • Nymmik RA. 2007. Improved environment radiation models. Adv Space Res 40: 313–320. [CrossRef] [Google Scholar]
  • Nymmik RA. 2011. Some problems with developing a standard for determining solar energetic particle fluxes. Radiat Meas 47: 622–628. [Google Scholar]
  • Raukunen O, Vainio R, Tylka AJ, Dietrich WF, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R. 2018. Two solar proton fluence models based on ground level enhancement observations. J Space Weather Space Clim 8: A04 [CrossRef] [EDP Sciences] [Google Scholar]
  • Rodriguez JV, Sandberg I, Mewaldt RA, Daglis IA, Jiggens P. 2017. Validation of the effect of cross-calibrated goes solar proton effective energies on derived integral fluxes by comparison with stereo observations. Space Weather 15: 290–309. [CrossRef] [Google Scholar]
  • Sandberg I, Jiggens P, Heynderickx D, Daglis I. 2014. Cross calibration of noaa goes solar proton detectors using corrected nasa imp-8/gme data. Geophys Res Lett 41: 4435–4441. [CrossRef] [Google Scholar]
  • Sandroos A, Vainio R. 2009. Diffusive shock acceleration to relativistic energies in the solar corona. A&A 507: L21–L24. [Google Scholar]
  • Tylka AJ, Dietrich WF. 2009. A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. 31st International Cosmic Ray Conference, Łódź (Poland). [Google Scholar]
  • Tylka AJ, Adams JH, Boberg PR, Brownstein B, Dietrich WF, Flueckiger EO, Peterson EL, Shea MA, Smart DF, Smith EC. 1997. CREME96: A revision of the cosmic ray effects on micro-electronics code. IEEE Trans Nucl Sci 446: 2150–2160. [NASA ADS] [CrossRef] [Google Scholar]
  • Vainio R, Raukunen O, Tylka AJ, Dietrich WF, Afanasiev A. 2017. Why is solar cycle 24 an inefficient producer of high-energy particle events ? A&A 604: A47. [Google Scholar]
  • Wheatland MS. 2000. The origin of the solar flare waiting-time distribution. Astrophys J 536: L109–L112. [Google Scholar]
  • Wheatland M. 2003. The coronal mass ejection waiting-time distribution. Sol Phys 214: 361–373. [Google Scholar]
  • Xapsos MA, Summers GP, Burke EA. 1998. Probability model for peak fluxes of solar proton events. IEEE Trans Nucl Sci 456: 2948–2953. [Google Scholar]
  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 1999. Probability model for worst case solar proton event fluences. IEEE Trans Nucl Sci 466: 1481–1485. [Google Scholar]
  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 2000. Probability model for cumulative solar proton event fluences. IEEE Trans Nucl Sci 473: 486–490. [NASA ADS] [CrossRef] [Google Scholar]
  • Xapsos MA, Stauffer C, Gee GB, Barth JL, Stassinopoulos EG, GcGuire RE. 2004. Model for solar proton risk assessment. IEEE Trans Nucl Sci 516: 3394–3398. [CrossRef] [Google Scholar]
  • Xapsos MA, Stauffer C, Jordan T, Barth JL, Mewaldt RA. 2007. Model for cumulative solar heavy ion energy and linear energy transfer spectra. IEEE Trans Nucl Sci 54: 1985–1989. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.