J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A37
Number of page(s) 14
Published online 24 July 2018
  • Alberti T, Laurenza M, Cliver E, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. ApJ 838 (1): 59. [CrossRef] [Google Scholar]
  • Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292 (9): 134. [CrossRef] [Google Scholar]
  • Balch CC. 2008. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6 (1): 1–13. [CrossRef] [Google Scholar]
  • Bazilevskaya G, Logachev YI, Vashenyuk E, Daibog E, Ishkov V, et al. 2015. Solar proton events in solar activity cycles 21–24. Bull Russ Acad Sci Phys 79 (5): 573–576. [CrossRef] [Google Scholar]
  • Belov A, Garcia H, Kurt V, Mavromichalaki H, and Gerontidou M. 2005. Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Sol Phys 229 (1): 135–159, [CrossRef] [Google Scholar]
  • Bonte K, Jacobs C, Robbrecht E, De Groof A, Berghmans D, Poedts S. 2011. Validation of CME detection software (CACTus) by means of simulated data, and analysis of projection effects on CME velocity measurements. Sol Phys 270 (1): 253–272. [NASA ADS] [CrossRef] [Google Scholar]
  • Brueckner G, Howard R, Koomen M, Korendyke C, Michels D, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162 (1–2): 357–402. [NASA ADS] [CrossRef] [Google Scholar]
  • Byrne JP. 2015. Investigating the kinematics of coronal mass ejections with the automated CORIMP catalog. J. Space Weather Space Clim 5: A19. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cane H, Lario D. 2006. An introduction to CMEs and energetic particles. Space Sci Rev 123 (1–3): 45–56. [CrossRef] [Google Scholar]
  • Cane H, Reames D, Rosenvinge T. 1988. The role of interplanetary shocks in the longitude distribution of solar energetic particles. J Geophys Res: Space Phys 93(A9): 9555–9567. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane H, Richardson I, Von Rosenvinge T. 2010. A study of solar energetic particle events of 1997–2006: Their composition and associations. J Geophys Res: Space Phys (1978–2012) 115(A8): 1–18. [Google Scholar]
  • Cliver E. 1996. Solar flare gamma-ray emission and energetic particles in space. In: High energy solar physics, vol. 374, AIP Publishing, Melville, NY, 45–60. [NASA ADS] [CrossRef] [Google Scholar]
  • Cohen C, Stone E, Mewaldt R, Leske R, Cummings A, Mason G, Desai M, von Rosenvinge T, Wiedenbeck M. 2005. Heavy ion abundances and spectra from the large solar energetic particle events of October–November 2003. J Geophys Res: Space Phys 110(A9): 1–15. [CrossRef] [Google Scholar]
  • Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh M, Crosby N, Malandraki O, Tsiropoula G. 2015. Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Sol Phys 290 (3): 841–874. [CrossRef] [Google Scholar]
  • Evans RM, Pulkkinen AA, Zheng Y, Leila Mays M, Taktakishvili A, Kuznetsova MM, Hesse M. 2013. The SCORE scale: A coronal mass ejection typification system based on speed. Space Weather 11 (6): 333–334. [NASA ADS] [CrossRef] [Google Scholar]
  • Georgoulis MK. 2008. Magnetic complexity in eruptive solar active regions and associated eruption parameters. Geophys Res Lett 35 (6): 1–5. [CrossRef] [Google Scholar]
  • Gopalswamy N, Akiyama S, Yashiro S, Xie H, Makela P, Michalek G. 2014. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys Res Lett 41 (8): 2673–2680. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard R. 2009. The SOHO/LASCO CME Catalog. Earth Moon Planets 104: 295–313, DOI: 10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy N, Yashiro S, Michalek G, Xie H, Makela P, Vourlidas A, Howard R. 2010. A catalog of halo coronal mass ejections from SOHO. Sun and Geosphere 5 (1): 7–16. [Google Scholar]
  • Howard T, Nandy D, Koepke A. 2008. Kinematic properties of solar coronal mass ejections: Correction for projection effects in spacecraft coronagraph measurements. J Geophys Res: Space Phys 113(A1): 1–12. [Google Scholar]
  • Kahler S. 2001. J Geophys Res: Space Phys 106(A10): 20947–20955. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler S, Reames D. 2003. Solar energetic particle production by coronal mass ejection-driven shocks in solar fast-wind regions. ApJ 584(2), 1063. [NASA ADS] [CrossRef] [Google Scholar]
  • Kaiser ML, Kucera T, Davila J, Cyr OS, Guhathakurta M, Christian E. 2008. The STEREO mission: An introduction. Space Sci Rev 136 (1–4), 5–16. [NASA ADS] [CrossRef] [Google Scholar]
  • Kontogiannis I, Belehaki A, Tsiropoula G, Tsagouri I, Anastasiadis A, Papaioannou A. 2016. Building a new space weather facility at the National Observatory of Athens. Adv Space Res 57 (1): 418–430. [CrossRef] [Google Scholar]
  • Kurt V, Belov A, Mavromichalaki H, Gerontidou M. 2004. Statistical analysis of solar proton events. Ann Geophys 22(6), 2255–2271. [NASA ADS] [CrossRef] [Google Scholar]
  • Lara A, Gopalswamy N, Xie H, Mendoza-Torres E, Perez-Eriquez R, Michalek G. 2006. Are halo coronal mass ejections special events? J Geophys Res Space Phys 111(A6): 1–12. [Google Scholar]
  • Lario D, Kwon R-Y, Vourlidas A, Raouafi N, Haggerty D, et al. 2016. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: evolution of the associated CME shock. ApJ 819 (1): 72. [NASA ADS] [CrossRef] [Google Scholar]
  • Laurenza M, Cliver E, Hewitt J, Storini J, Ling A, Balch C, Kaiser M. 2009. A technique for shortterm warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7 (4): 1–18. [NASA ADS] [CrossRef] [Google Scholar]
  • Mason GM, Desai MI, Cohen C, Mewaldt RA, Stone EC, Dwyer JR. 2006. The role of interplanetary scattering in western hemisphere large solar energetic particle events. Astrophys J Lett 647 (1): L65. [NASA ADS] [CrossRef] [Google Scholar]
  • Michalek G, Gopalswamy N, Yashiro S. 2003. A new method for estimating widths, velocities, and source location of halo coronal mass ejections. ApJ 584 (1): 472. [NASA ADS] [CrossRef] [Google Scholar]
  • Nicewicz J, Michalek G. 2014. Testing the asymmetric cone model for halo CMEs using STEREO/SECCHI coronagraphic observations. Adv Space Res 54 (4): 780–787. [CrossRef] [Google Scholar]
  • Nunez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9 (7): 1–28. [CrossRef] [Google Scholar]
  • Nunez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events. Space Weather 13 (11): 807–819. [CrossRef] [Google Scholar]
  • Olmedo O, Zhang J, Wechsler H, Poland A, Borne K. 2008. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol Phys 248 (2): 485–499. [NASA ADS] [CrossRef] [Google Scholar]
  • Paassilta M, Raukunen O, Vainio R, Valtonen E, Papaioannou A, et al. 2017. Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24. J Space Weather Space Clim 7: A14. [CrossRef] [Google Scholar]
  • Papaioannou A, Anastasiadis A, Sandberg I, Georgoulis MK, Tsiropoula G, Tziotziou K, Jiggens P, Hilgers A. 2015. A novel forecasting system for Solar Particle Events and Flares (FORSPEF). J Phys Conf Ser 632 (1): 012075, [CrossRef] [Google Scholar]
  • Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. [CrossRef] [EDP Sciences] [Google Scholar]
  • Park J, Moon Y-J, Gopalswamy N. 2012. Dependence of solar proton events on their associated activities: Coronal mass ejection parameters. J Geophys Res: Space Phys 117(A8): 1–7. [Google Scholar]
  • Parker E. 1965. Dynamical theory of the solar wind. Space Sci Rev 4 (5–6): 666–708. [NASA ADS] [CrossRef] [Google Scholar]
  • Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5 (5): 1–28. [CrossRef] [Google Scholar]
  • Reames D, Barbier L, Ng C. 1996. The spatial distribution of particles accelerated by coronal mass ejection-driven shocks. ApJ 466: 473. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90 (3–4): 413–491. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV. 2015. What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci Rev 194 (1–4): 303–327. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson IG, von Rosenvinge TT, Cane HV. 2016. 25 MeV solar proton events in Cycle 24 and previous cycles. Adv Space Res, 60: 755–767. [CrossRef] [Google Scholar]
  • Robbrecht E, Berghmans D. 2004. Automated recognition of coronal mass ejections (CMEs) in near-realtime data. A&A 425 (3): 1097–1106. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Rodriguez J, Krosschell J, Green J. 2014. Intercalibration of GOES 8–15 solar proton detectors. Space Weather 12 (1): 92–109. [CrossRef] [Google Scholar]
  • Rouillard A, Sheeley N, Tylka A, Vourlidas A, Ng C, et al. 2012. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. ApJ 752 (1): 44. [NASA ADS] [CrossRef] [Google Scholar]
  • Smart D, Shea M. 1989. PPS-87: a new event oriented solar proton prediction model. Adv Space Res 9 (10): 281–284. [CrossRef] [EDP Sciences] [Google Scholar]
  • Souvatzoglou G, Papaioannou A, Mavromichalaki H, Dimitroulakos J, Sarlanis C. 2014. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 12 (11): 633–649. [CrossRef] [Google Scholar]
  • St Cyr O, Posner A, Burkepile J. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15 (1): 240–257. [CrossRef] [Google Scholar]
  • Strauss R, Fichtner H. 2015. On aspects pertaining to the perpendicular diffusion of solar energetic particles. ApJ 801 (1): 29. [NASA ADS] [CrossRef] [Google Scholar]
  • Tylka A, Cohen C, Dietrich W, Lee M, Maclennan C, Mewaldt R, Ng C, Reames D. 2005. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. ApJ 625 (1): 474. [NASA ADS] [CrossRef] [Google Scholar]
  • Tylka AJ, Lee MA. 2006. A model for spectral and compositional variability at high energies in large, gradual solar particle events. ApJ 646 (2): 1319. [NASA ADS] [CrossRef] [Google Scholar]
  • Vainio R, Raukunen O, Tylka AJ, Dietrich WF, Afanasiev A. 2017. Why is solar cycle 24 an inefficient producer of high-energy particle events? A&A 604: A47. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wang Y, Chen C, Gui B, Shen C, Ye P, Wang S. 2011. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J Geophys Res A: Space Phys 116(A4): 1–15. [Google Scholar]
  • Zhang M, Qin G, Rassoul H. 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. ApJ 692 (1): 109. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.