Issue
J. Space Weather Space Clim.
Volume 8, 2018
Space weather effects on GNSS and their mitigation
Article Number A38
Number of page(s) 21
DOI https://doi.org/10.1051/swsc/2018026
Published online 22 August 2018
  • Burke WJ, Huang CY, Valladares CE, Machuzak JS, Gentile LC, Sultan PJ. 2003. Multipoint observations of equatorial plasma bubbles. J Geophys Res 108: 1221, DOI: 10.1029/2002JA009382. [CrossRef] [Google Scholar]
  • Burke WJ, Huang CY, Gentile LC, Bauer L. 2004. Seasonal-longitudinal variability of equatorial plasma bubbles. Ann Geophys 22: 3089–3098. [CrossRef] [Google Scholar]
  • Camps A, Barbosa J, Juan M, Blanch E, Altadill D, González G, Vazquez G, Riba J, Orús R. 2017. Improved Modelling of Ionospheric Disturbances for Remote Sensing and Navigation. In: 2017 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Fort Worth, Texas, USA, July 23–28. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8118204. [Google Scholar]
  • Cervera MA, Thomas RM. 2006. Latitudinal and temporal variation of equatorial ionospheric irregularities determined from GPS scintillation observations. Ann Geophys 24: 3329–3341. [CrossRef] [Google Scholar]
  • Cherniak I, Zakharenkova I. 2016. First observations of super plasma bubbles in Europe. Geophys Res Lett 43: 11137–11145, DOI: 10.1002/2016GL071421. [CrossRef] [Google Scholar]
  • Datta-Barua S. 2008. Ionospheric threats to the integrity of airborne GPS users. PhD Thesis, Stanford University, Stanford, CA, USA. [Google Scholar]
  • De Paula ER, Rodrigues FS, Iyer KN, Kantor IJ, Abdu MA, Kintner PM, Ledvina BM, Kil H. 2003. Equatorial anomaly effects on GPS scintillations in Brazil. Adv Space Res 31: 749–754. [CrossRef] [Google Scholar]
  • De Rezende L, De Paula E, Kantor I, Kintner P. 2007. Mapping and survey of plasma bubbles over Brazilian territory. J Navig 60: 69–81. [CrossRef] [Google Scholar]
  • Eccles JV. 1998. Modeling investigation of the evening pre-reversal enhancement of the zonal electric field in the equatorial ionosphere. J Geophys Res 103: 26709–26719. [CrossRef] [Google Scholar]
  • Fejer BG, Scherliess L, de Paula ER. 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104: 19859–19869. [CrossRef] [Google Scholar]
  • Gentile LC, Burke WJ, Rich FJ. 2006. A global climatology for equatorial plasma bubbles in the topside ionosphere. Ann Geophys 24: 163–172. [CrossRef] [Google Scholar]
  • Haaser RA, Earle GD, Heelis RA, Klenzing J, Stoneback R, Coley WR, Burrell AG. 2012. Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum. J Geophys Res 117: A10305, DOI: 10.1029/2012JA017814. [CrossRef] [Google Scholar]
  • Hargreaves JK. 1992. The Solar-Terrestrial Environment. An introduction to geospace – the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere, Part of Cambridge Atmospheric and Space Science Series Cambridge University Press, New York, NY, ISBN 9780521427371. [CrossRef] [Google Scholar]
  • Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium scale traveling disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res 111: A07–S11, DOI: 10.1029/2005JA011471. [CrossRef] [Google Scholar]
  • Huang C-S. 2017. The characteristics and generation mechanism of small‐amplitude and large‐amplitude ESF irregularities observed by the C/NOFS satellite. J Geophys Res [Space Phys] 122: 8959–8973, DOI: 10.1002/2017JA024041. [CrossRef] [Google Scholar]
  • Huang CY, Burke WJ, Machuzak JS, Gentile LC, Sultan PJ. 2002. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology. J Geophys Res 107: 1434, DOI: 10.1029/2002JA009452. [Google Scholar]
  • Hysell DL, Burcham JD. 1998. JULIA radar studies of equatorial spread F. J Geophys Res 103: 29155. [CrossRef] [Google Scholar]
  • Juan JM, Aragon-Angel A, Sanz J, González-Casado G, Rovira-Garcia A. 2017. A method for scintillation characterization using geodetic receivers operating at 1 Hz. J Geod 91: 1383–1397, DOI: 10.1007/s00190-017-1031-0. [CrossRef] [Google Scholar]
  • Juan JM, Sanz J, González G, Rovira-García A, Camps A, et al. 2018a. Feasibility of precise navigation in high and low latitude regions under scintillation conditions. J Space Weather Space Clim 8: A05. [CrossRef] [Google Scholar]
  • Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Perez RO. 2018b. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8: A14. [CrossRef] [Google Scholar]
  • Katamzi-Joseph ZT, Habarulema JB, Hernández-Pajares M. 2017. Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather 15: 1177–1190, DOI: 10.1002/2017SW001674. [CrossRef] [Google Scholar]
  • Kelley MC. 1989. The Earth’s ionosphere: Plasma physics and electrodynamics, International geophysics series, Vol. 43, Academic Press, San Diego, CA, ISBN-10: 0124040136/ISBN-13: 978-0124040137. [Google Scholar]
  • Kil H, Heelis RA. 1998. Global distribution of density irregularities in the equatorial ionosphere. J Geophys Res 103: 407–417. [CrossRef] [Google Scholar]
  • Kil H, Paxton LJ, Oh S-J. 2009. Global bubble distribution seen from ROCSAT-1 and its association with the evening pre-reversal enhancement. J Geophys Res 114: A06307, DOI: 10.1029/2008JA013672. [Google Scholar]
  • Kumar S. 2017. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector. Astrophys Space Sci 362: 93, DOI: 10.1007/s10509-017-3074-3. [CrossRef] [Google Scholar]
  • Kumar S, Singh AK. 2009. Variation of ionospheric total electron content in Indian low latitude region of equatorial ionization anomaly (EIA). Adv Space Res 43: 1555–1562. [CrossRef] [Google Scholar]
  • Kumar S, Singh RP, Tan EL, Singh AK, Ghodpage RN, Siingh D. 2016a. Temporal and spatial deviation in F2 peak parameters derived from FORMOSAT-3/COSMIC. Space Weather 14: 391–405, DOI: 10.1002/2015SW001351. [CrossRef] [Google Scholar]
  • Kumar S, Chen W, Liu Z, Ji S. 2016b. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong. J Geophys Res [Space Phys] 121: 9164–9178, DOI: 10.1002/2016JA022873. [CrossRef] [Google Scholar]
  • Kumar S, Chen W, Chen M, Liu Z, Singh RP. 2017. Thunderstorm/Lightning induced ionospheric perturbation: An observation from equatorial and low-latitude stations around Hong Kong. J Geophys Res [Space Physics] 122: 9032–9044, DOI: 10.1002/2017JA023914. [CrossRef] [Google Scholar]
  • Magdaleno S, Herraiz M, Radicella SM. 2012. Ionospheric bubble seeker: a Java application to detect and characterize ionospheric plasma depletion from GPS data. IEEE Trans Geosci Remote Sens 50: 1719–1727, DOI: 10.1109/TGRS.2011.2168965. [CrossRef] [Google Scholar]
  • Magdaleno S, Herraiz M, Altadill D, de la Morena BA. 2017. Climatology characterization of equatorial plasma bubbles using GPS data, J Space Weather Space Clim 7: A3, DOI: 10.1051/swsc/2016039. [CrossRef] [Google Scholar]
  • Mannucci AJ, Wilson BD, Ewards CD. 1993. A new method for monitoring the Earth’s ionosphere total electron content using the GPS global network. Proceedings of ION GPS-93 Institute of Navigation, pp. 1323–1332. [Google Scholar]
  • Maruyama T, Matuura N. 1984. Longitudinal variability of annual changes in activity of Equatorial Spread F and plasma bubbles. J Geophys Res 89: 10903–10912. [CrossRef] [Google Scholar]
  • McNamara LF, Caton RG, Parris RT, Pedersen TR, Thompson DC, Wiens KC, Groves KM. 2013. Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms. Radio Sci. 48: 89–101, DOI: 10.1002/rds.20025. [CrossRef] [Google Scholar]
  • Nishioka M, Saito A, Tsugawa T. 2008. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J Geophys Res, 113: A05301, DOI: 10.1029/2007JA012605. [CrossRef] [Google Scholar]
  • Ott E, Russell DA. 1978. Diffuse-Boundary Rayleigh-Taylor instability. Phys Rev Lett 41: 1048, DOI: 10.1103/PhysRevLett.41.1048. [CrossRef] [Google Scholar]
  • Paznukhov VV, Carrano CS, Doherty PH, Groves KM, Caton RG, et al. 2012. Equatorial plasma bubbles and l-band scintillations in Africa during solar minimum. Ann Geophys 30: 675–682, DOI: 10.5194/angeo-30-675-2012. [CrossRef] [Google Scholar]
  • Pi X, Iijima BA, Lu W. 2014. Effects of ionospheric scintillation on GNSS-based positioning. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, Florida, September, pp. 1090–1100. [Google Scholar]
  • Portillo A, Herraiz M, Radicella SM, Ciraolo L. 2008. Equatorial plasma bubbles studied using African slant total electron content observations. J Atmos Sol Terr Phys 70: 907–917. [CrossRef] [Google Scholar]
  • Pradipta R, Valladares CE, Doherty PH. 2015. An effective TEC data detrending method for the study of equatorial plasma bubbles and traveling ionospheric disturbances. J Geophys Res, 120: 11048–11055, DOI: 10.1029/2015JA021723. [CrossRef] [Google Scholar]
  • Rawer K. 1963. Propagation of decameter waves HF Band. In: Meteorological and astronomical influences on radio wave propagation, Landmark B (Ed.), Academic Press, New York, pp. 221–250. [Google Scholar]
  • Reinisch BW, Haines DM, Kuklinski. WS. 1992. The new portable Digisonde for vertical and oblique sounding, AGARD-CP-502, February. [Google Scholar]
  • Rovira-Garcia A, Juan JM, Sanz J, González-Casado G, Ibez-Segura D. 2016. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J Geod 90: 229–240, DOI: 10.1007/s00190-015-0868-3. [CrossRef] [Google Scholar]
  • Sanz J, Juan JM, González-Casado G, Prieto-Cerdeira R, Schlüter S, Orús R. 2014. Novel Ionospheric Activity Indicator Specifically Tailored for GNSS Users. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa Florida, September, pp. 1173–1182. [Google Scholar]
  • Skone S, Knudsen K, de Jong M. 2001. Limitations in GPS receiver tracking performance under ionospheric scintillation conditions. Phys Chem Earth Part A 26: 613–621, ISSN 1464-1895, DOI: 10.1016/S1464-1895(01)00110-7. [CrossRef] [Google Scholar]
  • Smith J, Heelis RA. 2017. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophys Res [Space Phys] 122: 5743–5755, DOI: 10.1002/2017JA024128. [CrossRef] [Google Scholar]
  • Su S-Y, Chao CK, Liu CH. 2008. On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the post-sunset vertical drift velocities. J Geophys Res 113: A05307, DOI: 10.1029/2007JA012809. [Google Scholar]
  • Sultan PJ. 1996. Linear theory and modelling of the Rayleigh-Taylor instability leading to the occurrence of Equatorial Spread F. J Geophys Res 101: 26875–26891. [CrossRef] [Google Scholar]
  • Tsunoda RT. 1985. Control of the seasonal and longitudinal occurrence of equatorial scintillations by longitudinal gradient in integrated E region Pedersen conductivity. J Geophys Res 90: 447–456, DOI: 10.1029/JA090iA01p00447. [CrossRef] [Google Scholar]
  • Tsunoda RT, Livingston RC, McClure JP, Hanson WB. 1982. Equatorial plasma bubbles: vertically elongated wedges from the bottomside F layer. J Geophys Res 87: 9171–9180. [CrossRef] [Google Scholar]
  • Vijayakumar PN, Pasricha PK. 1997. Parametrization of spectra of plasma bubble induced VHF satellite scintillations and its geophysical significance. Ann Geophys 15: 345–354. [CrossRef] [Google Scholar]
  • Wernik AW, Liu CH, Yeh KC. 1980. Model computation of radio wave scintillation caused by equatorial ionospheric bubbles. Radio Sci 15: 559–572. [CrossRef] [Google Scholar]
  • Whalen J. 2000. An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly. J Geophys Res 105: 5303–5315. [CrossRef] [Google Scholar]
  • Yokoyama T, Jin H, Shinagawa H. 2015. West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model. J Geophys Res 120, 8810–8816, DOI: 10.1002/2015JA021799-T. [CrossRef] [Google Scholar]
  • Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planets Space 68: 1–11, DOI: 10.1186/s40623-016-0490-5. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.