J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A24
Number of page(s) 14
Published online 17 April 2018
  • Adams JH, Fisher JH, Robinson ZD, Nonnast JH, Reed R, Waren K, Sierawski B. 2017. Space Ionizing Radiation Environment and Effects (SIRE2) Model for Satellite Applications. In: 2017 Single Event Effects Symposium, San Diego. [Google Scholar]
  • Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al. 1993. BATSE observations of gamma-ray burst spectra. I − Spectral diversity. ApJ 413: 281–292, DOI: 10.1086/172995. [Google Scholar]
  • Chancellor J, Scott G, Sutton J. 2014. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life 4: 491–510, DOI: 10.3390/life4030491. [Google Scholar]
  • Cressler JD, Mantooth HA. 2012. Extreme Environment Electronics, first edn., CRC Press, Boca Raton. ISBN 9781138074224. [Google Scholar]
  • Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, et al. 2015. SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, 406–426, DOI: 10.1002/2013SW001008. [Google Scholar]
  • Cucinotta FA. 2014. Space radiation risks for astronauts on multiple international space station missions. PLoS ONE 9: 16–23, DOI: 10.1371/journal.pone.0096099. [Google Scholar]
  • Ellison DC, Ramaty R. 1985. Shock acceleration of electrons and ions in solar flares. ApJ 298: 400–408, DOI: 10.1086/163623. [Google Scholar]
  • Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. Solar proton events during solar cycles 19, 20, and 21. Sol Phys 126: 385–401, DOI: 10.1007/BF00153058. [Google Scholar]
  • Glover A, Hilgers A, Rosenqvist L, Bourdarie S. 2008. Interplanetary proton cumulated fluence model update. Adv Space Res 42: 1564–1568, DOI: 10.1016/j.asr.2007.08.023. [Google Scholar]
  • Jiggens PTA, Gabriel SB, Heynderickx D, Crosby N, Glover A, Hilgers A. 2012. ESA SEPEM project: Peak flux and fluence model. IEEE Trans Nucl Sci 59: 1066–1077, DOI: 10.1109/TNS.2012.2198242 [Google Scholar]
  • King JH. 1974. Solar Proton Fluences for 1977–1983 Space Missions. J Spacecr Rocket 11: 401–408, DOI: 10.2514/3.62088. [Google Scholar]
  • Onsager T, Grubb R, Kunches J, Matheson L, Speich D, Zwickl RW, Sauer H. 1996. Operational uses of the GOES energetic particle detectors. In: ER Washwell, ed., Proc. SPIE 2812, GOES-8 and Beyond, 2812, pp. 281–290, DOI: 10.1117/12.254075. [Google Scholar]
  • Petersen EL, Shapiro P, Adams JH, Burke EA. 1982. Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices. IEEE Trans Nucl Sci 29: 2055–2063, DOI: 10.1109/TNS.1982.4336495. [Google Scholar]
  • Robinson ZD. 2015. New probabilistic model for episode integrated fluences of protons using episodes from 1973–2013, PhD thesis, University of Alabama, Huntsville. [Google Scholar]
  • Rodriguez JV, Krosschell JC, Green JC. 2014. Intercalibration of GOES 8-15 solar proton detectors. Space Weather 12: 92–109, DOI: 10.1002/2013SW000996. [Google Scholar]
  • Rosenqvist L, Hilgers A, Evans H, Daly E, Hapgood M, Stamper R, Zwickl R, Bourdarie S, Boscher D. 2005. Toolkit for Updating Interplanetary Proton Cumulated Fluence Models. J Spacecr Rocket 42: 1077–1090, DOI: 10.2514/1.8211. [Google Scholar]
  • Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41, 4435–4441, DOI: 10.1002/2014GL060469. [Google Scholar]
  • Smart DF, Shea MA. 1999. Comment on the use of GOES solar proton data and spectra in solar proton dose calculations. Radiat Meas 30: 327–335, DOI: 10.1016/S1350-4487(99)00059-1. [Google Scholar]
  • Suparta W. 2014. Space Weather Effects on Microelectronics Devices around the LEO Spacecraft Environments. J Phys Conf Ser 539: 012025, DOI: 10.1088/1742-6596/539/1/012025. [Google Scholar]
  • Xapsos MA, Barth JL, Stassinopoulos EG, Burke EA, Gee GB. 1999a. Space Environment Effects: Model for Emission of Solar Protons (ESP)-Cumulative and Worst-Case Event Fluences. Tech. Rep. December, NASA MSFC, Huntsville,{%}5Cnpapers3://publication/uuid/0593A628-7AE4-44A0-90EA-065D86F57D87. [Google Scholar]
  • Xapsos MA, Summers GP, Burke EA, Barth JL, Stassinopoulos EG. 1999b. Probability model for worst case solar proton event fluences. IEEE Trans Nucl Sci 46: 1481–1485, DOI: 10.1109/23.819111. [Google Scholar]
  • Xapsos MA, Barth JL, Stassinopoulos EG, Messenger SR, Walters RJ, Summers GP, Burke EA. 2000. Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans Nucl Sci 47: 2218–2223, DOI: 10.1109/23.903756. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.