Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
|
|
---|---|---|
Article Number | A42 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2018029 | |
Published online | 03 October 2018 |
- Aurass H, Klein K-L, Zlotnik EY, Zaitsev VV. 2003. Solar type IV burst spectral fine structures. I. Observations. A&A 410: 1001–1010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bala B, Lanzerotti LJ, Gary DE, Thomson DJ. 2002. Noise in wireless systems produced by solar radio bursts. Radio Sci 37(2): 1018. [CrossRef] [Google Scholar]
- Benz AO, Monstein C, Meyer H. 2005. Callisto – a new concept for solar radio spectrometers. Sol Phys 226: 143–151. [Google Scholar]
- Boischot A. 1958. Étude du rayonnement radioélectrique solaire sur 169 MHz à l’aide d’un grand interféromètre à réseau. Ann Astrophys 21: 273. [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162: 357–402. [CrossRef] [Google Scholar]
- Carrano CS, Bridgwood CT, Groves KM. 2009. Impacts of the December 2006 solar radio bursts on the performance of GPS. Radio Sci 44. [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Lanzerotti LJ, de Paula ER, Vo HB. 2006. Observed solar radio burst effects on GPS/Wide Area Augmentation System carrier-to-noise ratio. Space Weather 4: 10006. [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Mannucci AJ, Meyer RF, Doherty P, Coster AJ. 2008. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather 61: S10D07. [Google Scholar]
- Chernov GP. 2006. Solar radio bursts with drifting stripes in emission and absorption. Space Sci Rev 127: 195–326. [Google Scholar]
- Cliver EW, White SM, Balasubramaniam KS. 2011. The solar decimetric spike burst of 2006 December 6: Possible evidence for field-aligned potential drops in post-eruption loops. Astrophys J 743: 145. [Google Scholar]
- Demyanov VV, Afraimovich EL, Jin S. 2012. An evaluation of potential solar radio emission power threat on GPS and GLONASS performance. GPS Solut 16: 411. [CrossRef] [Google Scholar]
- FAA. 2012. Instrument flying handbook. Tech. Rep., US Department of Transportation – Federal Aviation Administration, https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/faa-h-8083-15b.pdf. [Google Scholar]
- Frequentis AG. 2007. B-AMC interference analysis and spectrum requirements. Tech. Rep., Eurocontrol, https://www.eurocontrol.int/sites/default/files/article/content/documents/communications/22102007-b-amc-project-deliverable-d4-v11.pdf [Google Scholar]
- Garcia HA. 1994. Temperature and emission measure from GOES soft X-ray measurements. Sol Phys 154: 275–308. [Google Scholar]
- Hey JS. 1946. Solar radiations in the 4–6 metre radio wave-length band. Nature 157: 47–48. [Google Scholar]
- ICAO. 2007. Guidance material on comparison of surveillance technologies (GMST). Tech. Rep., International Civil Aviation Organization, https://www.icao.int/APAC/Documents/edocs/cns/gmst_technology.pdf [Google Scholar]
- Isliker H, Benz AO. 1994. Catalogue of 1–3 GHz solar flare radio emission. A&AS 104: 145–160. [Google Scholar]
- Jiřička K, Karlický M, Mészárosová H, Snížek V. 2001. Global statistics of 0.8–2.0 GHz radio bursts and fine structures observed during 1992–2000 by the Ondřejov radiospectrograph. A&A 375: 243–250. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kennewell JA. 2008. RSTN Solar Radio Telescopes (Discrete Frequency) and Data. URL: http://www.deepsouthernskies.com/LSO/RSTN.pdf. [Google Scholar]
- Klobuchar JA, Kunches JM, VanDierendonck AJ. 1999. Eye on the ionosphere: potential solar radio burst effects on GPS signal to noise. GPS Solut, 3(2), 69–71. [CrossRef] [Google Scholar]
- Knipp DJ, Ramsay AC, Beard ED, Boright AL, Cade WB, et al. 2016. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses. Space Weather 14: 614–633. [NASA ADS] [CrossRef] [Google Scholar]
- Lecacheux A. 2000. The Nançay Decameter Array: a useful step towards giant, new generation radio telescopes for long wavelength radio astronomy. Geophysical Monograph Series, Vol. 119, American Geophysical Union, Washington DC, p. 321. [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 17–40. [Google Scholar]
- Leping L, Zhang J. 2009. Statistics of flares sweeping across sunspots. Astrophys J Lett 706: L17–L21. [NASA ADS] [CrossRef] [Google Scholar]
- Luftfartsverket. 2015. Annual Report, 2015. https://www.lfv.se/globalassets/nyheter/nyheter-2016/eng_lfv2015_lores.pdf. [Google Scholar]
- Mercier C, Genova F, Aubier MG. 1989. Radio observations of atmospheric gravity waves. Ann Geophys 7: 195–202. [Google Scholar]
- Micallef J. 2009. Compatibility criteria and interference scenarios for SSR systems. Tech. rep., Eurocontrol, https://www.eurocontrol.int/sites/default/files/article//content/documents/communications/24082009-lcis-c3-criteria-and-tests-v10.pdf. [Google Scholar]
- Nindos A, Aurass H, Klein K-L, Trottet G. 2008. Radio emission of flares and coronal mass ejections. Invited review. Sol Phys 253: 3–41. [Google Scholar]
- Nita GM, Gary DE, Lanzerotti LJ, Thomson DJ. 2002. The peak flux distribution of solar radio bursts. Astrophys J 570: 423–438. [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res 12: 2825–2830. [Google Scholar]
- Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. A&ARv 16: 1–153. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Régnier S. 2015. A new approach to the maser emission in the solar corona. A&A 581: A9. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11: 394–406. [NASA ADS] [CrossRef] [Google Scholar]
- The Local. 2015. Solar storm grounds Swedish air traffic. URL: https://www.thelocal.se/20151104/solar-storm-grounds-swedish-air-traffic. [Google Scholar]
- Torii C, Tsukiji Y, Kobayashi S, Yoshimi N, Tanaka H, Enome S. 1979. Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proceedings of the Research Institute of Atmospherics, Nagoya University 26: 129–132. [Google Scholar]
- Zlotnik EY. 2013. Instability of electrons trapped by the coronal magnetic field and its evidence in the fine structure (zebra pattern) of solar radio spectra. Sol Phys 284: 579–588. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.