Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2020017 | |
Published online | 09 June 2020 |
- Abreu VJ, Yee JH. 1989. Diurnal and seasonal variation of the nighttime OH (8–3) emission at low latitudes. J Geophys Res 94: 11949–11957. https://doi.org/10.1029/JA094iA09p11949. [CrossRef] [Google Scholar]
- Adler-Golden S. 1997. Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements. J Geophys Res 102: 19969–19976. https://doi.org/10.1029/97JA01622. [CrossRef] [Google Scholar]
- Allen M, Lunine JI, Yung YL. 1984. The vertical distribution of ozone in the mesosphere and lower thermosphere. J Geophys Res 89: 4841–4872. https://doi.org/10.1029/JD089iD03p04841. [NASA ADS] [CrossRef] [Google Scholar]
- Allen M, Yung YL, Waters JW. 1981. Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere /50–120 km/. J Geophys Res 86: 3617–3627. https://doi.org/10.1029/JA086iA05p03617. [CrossRef] [Google Scholar]
- Atkinson R, Welge KH. 1972. Temperature dependence of O(1S) deactivation by CO2, O2, N2, and Ar. J Chem Phys 57: 3689–3693. https://doi.org/10.1063/1.1678829. [NASA ADS] [CrossRef] [Google Scholar]
- Baker DJ, Stair AT Jr. 1988. Rocket measurements of the altitude distributions of the hydroxyl airglow. Phys Scr 37: 611–622. https://doi.org/10.1088/0031-8949/37/4/021. [CrossRef] [Google Scholar]
- Becker KH, Groth W, Schurath U. 1971. The quenching of metastable O2(1∆g) and O2(1Σg+) molecules. Chem Phys Lett 8: 259–262. https://doi.org/10.1016/0009-2614(71)85004-2. [CrossRef] [Google Scholar]
- Bellisario C. 2015. Nightglow modeling at high altitude: Theoretical and observational study, Theses, Université Paris-Saclay, Orsay, France. https://hal.archives-ouvertes.fr/tel-01297329. [Google Scholar]
- Bellisario C, Keckhut P, Blanot L, Hauchecorne A, Simoneau P. 2014. O2 and OH night airglow emission derived from GOMOS-Envisat instrument. J Atmos Ocean Technol 31(6): 1301–1311. https://doi.org/10.1175/JTECH-D-13-00135.1. [CrossRef] [Google Scholar]
- Bertaux JL, Kyrölä E, Fussen D, Hauchecorne A, Dalaudier F, et al. 2010. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmos Chem Phys 10: 12091–12148. https://doi.org/10.5194/acp-10-12091-2010. [NASA ADS] [CrossRef] [Google Scholar]
- Brasseur GP, Solomon S. 2005. Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere. Springer, The Netherlands. [CrossRef] [Google Scholar]
- Burrage MD, Arvin N, Skinner WR, Hays PB. 1994. Observations of the O2 atmospheric band nightglow by the high resolution Doppler imager. J Geophys Res 99: 15017–15024. https://doi.org/10.1029/94JA00791. [CrossRef] [Google Scholar]
- Chabrillat S. 2001. Modélisation du changement global dans l’atmosphère moyenne. URL ftp://ftp.oma.be/dist/simonc/thesis.pdf. [Google Scholar]
- Chamberlain JW, Roesler FL. 1955. The OH bands in the infrared airglow. Astrophys J 121: 541. https://doi.org/10.1086/146015. [CrossRef] [Google Scholar]
- Chen Q, Kaufmann M, Zhu Y, Liu J, Koppmann R, Riese M. 2019. Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region. Atmos Chem Phys 19(22): 13891–13910. https://doi.org/10.5194/acp-19-13891-2019. [CrossRef] [Google Scholar]
- Day MJ, Dixon-Lewis G, Thompson K. 1972. Flame structure and flame reaction kinetics. VI. Structure, mechanism and properties of rich hydrogen + nitrogen + oxygen flames. Roy Soc Lond Proc Ser A 330: 199–218. https://doi.org/10.1098/rspa.1972.0140. [CrossRef] [Google Scholar]
- Derelle S, Simoneau P, Deschamps J, Rommeluère S, Hersé M, Moreels G, De Broniol E, Pacaud O. 2012. Development of low-flux SWIR radio-imaging systems to study nightglow emission. In: Infrared technology and applications XXXVIII, Vol. 8353, Andresen BF, Fulop GF, Norton PR (Eds), SPIE, Baltimore, MD, USA. [Google Scholar]
- Didebulidze GG, Lomidze LN, Gudadze NB, Pataraya AD, Todua M. 2011. Long-term changes in the nightly behaviour of the oxygen red 630.0 nm line nightglow intensity and trends in the thermospheric meridional wind velocity. Int J Remote Sens 32: 3093–3114. https://doi.org/10.1080/01431161.2010.541523. [CrossRef] [Google Scholar]
- Faivre M, Moreels G, Pautet D, Keckhut P, Hauchecorne A. 2003. Correlated measurements of mesospheric density and near infrared airglow. Adv Space Res 32: 777–782. https://doi.org/10.1016/S02731177(03)00423-X. [CrossRef] [Google Scholar]
- Fischer CF, Tachiev G. 2004. Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. Atom Data Nucl Data Tab 87(1): 1–184. https://doi.org/10.1016/j.adt.2004.02.001. http://www.sciencedirect.com/science/article/pii/S0092640X04000087. [Google Scholar]
- Floyd L, Prinz D, Crane P, Herring L. 2002. Solar UV irradiance variation during cycles 22 and 23. Adv Space Res 29(12): 1957–1962. https://doi.org/10.1016/S0273-1177(02)00242-9. [NASA ADS] [CrossRef] [Google Scholar]
- Fomichev VI, Blanchet J-P, Turner DS. 1998. Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J Geophys Res 103(11): 505. https://doi.org/10.1029/98JD00799. [Google Scholar]
- Fytterer T, von Savigny C, Mlynczak M, Sinnhuber M. 2019. Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region. Atmos Chem Phys 19(3): 1835–1851. https://doi.org/10.5194/acp-19-1835-2019. [CrossRef] [Google Scholar]
- Gattinger RL, Vallance Jones A. 1973. Observation and interpretation of hydroxyl airglow emissions. In: Physics and chemistry of upper atmospheres, McCormac BM (Ed.), Astrophysics and space science library, Vol. 35, Springer, The Netherlands, 184 p. [CrossRef] [Google Scholar]
- Grygalashvyly M, Sonnemann GR, Lübken F-J, Hartogh P, Berger U. 2014. Hydroxyl layer: Mean state and trends at midlatitudes. J Geophys Res(Atmos) 119(12): 391. https://doi.org/10.1002/2014JD022094. [Google Scholar]
- Haefele A, Hocke K, Kämpfer N, Keckhut P, Marchand M, Bekki S, Morel B, Egorova T, Rozanov E. 2008. Diurnal changes in middle atmospheric H2O and O3: Observations in the Alpine region and climate models. J Geophys Res (Atmos) 113: D17303. https://doi.org/10.1029/2008JD009892. [CrossRef] [Google Scholar]
- Hagan ME, Burrage MD, Forbes JM, Hackney J, Randel WJ, Zhang X. 1999. GSWM-98: Results for migrating solar tides. J Geophys Res 104: 6813–6828. https://doi.org/10.1029/1998JA900125. [CrossRef] [Google Scholar]
- Hays PB, Carignan G, Kennedy BC, Shepherd GG, Walker JCG. 1973. The visible-airglow experiment on atmosphere explorer. Radio Sci 8: 369–377. https://doi.org/10.1029/RS008i004p00369. [CrossRef] [Google Scholar]
- Hedin AE. 1991. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96: 1159–1172. https://doi.org/10.1029/90JA02125. [NASA ADS] [CrossRef] [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38: 1441. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hochanadel CJ, Ghormley JA, Ogren PJ. 1972. Absorption spectrum and reaction kinetics of the HO2 radical in the gas phase. J Chem Phys 56: 4426–4432. https://doi.org/10.1063/1.1677885. [CrossRef] [Google Scholar]
- Izod TPJ, Wayne RP. 1968. The formation, reaction and deactivation of O2(1Σ+g). Roy Soc Lond Proc Ser A 308: 81–94. https://doi.org/10.1098/rspa.1968.0209. [CrossRef] [Google Scholar]
- Jacobson MZ. 2005. Fundamentals of atmospheric modeling. Cambridge University Press, New York, NY, USA. [CrossRef] [Google Scholar]
- Kalogerakis K, Pejakovic D, Closser K. 2006. O(1D) relaxation by O(3P). Geophys Res Abstr 8: 9689. [Google Scholar]
- Khomich VY, Semenov AI, Shefov NN. 2008. Airglow as an indicator of upper atmospheric structure and dynamics. Springer-Verlag, Berlin Heidelberg, Germany. [Google Scholar]
- Le Texier H, Solomon S, Garcia RR. 1987. Seasonal variability of the OH Meinel bands. Planet Space Sci 35: 977–989. https://doi.org/10.1016/0032-0633(87)90002-X. [CrossRef] [Google Scholar]
- Leinert C, Bowyer S, Haikala LK, Hanner MS, Hauser MG, et al. 1997. 1997 reference of diffuse night sky brightness (Leinert+ 1998). VizieR Online Data Cat 412: 70,001. [Google Scholar]
- Lindzen RS. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86: 9707–9714. https://doi.org/10.1029/JC086iC10p09707. [CrossRef] [Google Scholar]
- Liu AZ, Swenson GR. 2003. A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves. J Geophys Res (Atmos) 108: 4151. https://doi.org/10.1029/2002JD002474. [CrossRef] [Google Scholar]
- Liu G, Shepherd GG. 2006. An empirical model for the altitude of the OH nightglow emission. Geophys Res Lett 33: L09805. https://doi.org/10.1029/2005GL025297. [Google Scholar]
- Lowe RP, Gilbert KL, Turnbull DN. 1991. High latitude summer observations of the hydroxyl airglow. Planet Space Sci 39: 1263–1270. https://doi.org/10.1016/0032-0633(91)90040-H. [CrossRef] [Google Scholar]
- Makhlouf UB, Picard RH, Winick JR. 1995. Photochemical-dynamical modeling of the measured response of airglow to gravity waves 1. Basic model for OH airglow. J Geophys Res 100: 11289–11312. https://doi.org/10.1029/94JD03327. [NASA ADS] [CrossRef] [Google Scholar]
- Makhlouf UB, Picard RH, Winick JR, Tuan TF. 1998. A model for the response of the atomic oxygen 557.7 nm and the OH Meinel airglow to atmospheric gravity waves in a realistic atmosphere. J Geophys Res 103: 6261–6270. https://doi.org/10.1029/97JD03082. [CrossRef] [Google Scholar]
- Marsh DR, Smith AK, Mlynczak MG, Russell JM. 2006. SABER observations of the OH Meinel airglow variability near the mesopause. J Geophys Res (Space Phys) 111: A10S05. https://doi.org/10.1029/2005JA011451. [Google Scholar]
- McDade IC. 1991. The altitude dependence of the OH(X2Π) vibrational distribution in the nightglow – some model expectations. Planet Space Sci 39: 1049–1057. https://doi.org/10.1016/0032-0633(91)90112N. [CrossRef] [Google Scholar]
- Meinel IAB. 1950. OH emission bands in the spectrum of the night sky. Astrophys J 111: 555. https://doi.org/10.1086/145296. [NASA ADS] [CrossRef] [Google Scholar]
- Melo SML, Lowe RP, Russell JP. 2000. Double-peaked hydroxyl airglow profiles observed from WINDII/UARS. J Geophys Res 105: 12397–12404. https://doi.org/10.1029/1999JD901169. [CrossRef] [Google Scholar]
- Mlynczak MG. 1997. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv Space Res 20: 1177–1183. https://doi.org/10.1016/S0273-1177(97)00769-2. [CrossRef] [Google Scholar]
- Mlynczak MG. 2000. A contemporary assessment of the mesospheric energy budget. Wash DC Am Geophys Union Geophys Monogr Ser 123: 37–52. https://doi.org/10.1029/GM123p0037. [Google Scholar]
- Mlynczak MG, Hunt LA, Mast JC, Thomas Marshall B, Russell JM, et al. 2013. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. J Geophys Res (Atmos) 118: 5724–5735. https://doi.org/10.1002/jgrd.50401. [CrossRef] [Google Scholar]
- Mlynczak MG, Solomon S. 1993. A detailed evaluation of the heating efficiency in the middle atmosphere. J Geophys Res 98(10): 517. https://doi.org/10.1029/93JD00315. [Google Scholar]
- Moreels G, Blamont J, Chahrokhi D. 1976. OH emission intensity measurements during the 1969 NASA Airborne Auroral Expedition. J Geophys Res 81: 5467–5478. https://doi.org/10.1029/JA081i031p05467. [CrossRef] [Google Scholar]
- Moreels G, Megie G, Vallance Jones A, Gattinger RL. 1977. An oxygen-hydrogen atmospheric model and its application to the OH emission problem. J Atmos Terr Phys 39: 551–570. [CrossRef] [Google Scholar]
- Mulligan FJ, Nallen JJ. 1998. A search for evidence of tidal activity in OH(3, 1) airglow emissions recorded at Maynooth (53.23° N, 6.35° W). Adv Space Res 21: 831–834. https://doi.org/10.1016/S02731177(97)00683-2. [CrossRef] [Google Scholar]
- Nakajima T, Tanaka M. 1986. Matrix formulations for the transfer of solar radiation in a plane parallel scattering atmosphere. J Quant Spectrosc Radiat Trans 35: 13–21. https://doi.org/10.1016/0022-4073(86)90088-9. [CrossRef] [Google Scholar]
- Nicolet M. 1971. Aeronomic reactions of hydrogen and ozone. In: Models and related experiments, Fiocco G (Ed.), Astrophysics and space science library, Vol. 25, Springer, The Netherlands, , p. 1. [Google Scholar]
- Nicolet M. 1984. On the molecular scattering in the terrestrial atmosphere – an empirical formula for its calculation in the homosphere. Planetary and Space Science 32: 1467. https://doi.org/10.1016/0032-0633(84)90089-8. [CrossRef] [Google Scholar]
- Noxon JF. 1970. Optical Emission from O(1D) and O2(b1Σg) in Ultraviolet Photolysis of O2 and CO2. J Chem Phys 52: 1852–1873. https://doi.org/10.1063/1.1673227. [CrossRef] [Google Scholar]
- Pautet P-D, Taylor MJ, Liu AZ, Swenson GR. 2005. Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. J Geophys Res (Atmos) 110: D03S90. https://doi.org/10.1029/2004JD004954. [Google Scholar]
- Pautet P-D, Taylor MJ, Pendleton WR, Zhao Y, Yuan T, Esplin R, McLain D. 2014. Advanced mesospheric temperature mapper for high-latitude airglow studies. Appl Opt 53(26): 5934–5943. https://doi.org/10.1364/AO.53.005934. [CrossRef] [PubMed] [Google Scholar]
- Petitdidier M, Teitelbaum H. 1977. Lower thermosphere emissions and tides. Planet Space Sci 25: 711–721. https://doi.org/10.1016/0032-0633(77)90123-4. [CrossRef] [Google Scholar]
- Pickett HM, Read WG, Lee KK, Yung YL. 2006. Observation of night OH in the mesosphere. Geophys Res Lett 33: L19808. https://doi.org/10.1029/2006GL026910. [CrossRef] [Google Scholar]
- Rodrigo R, Lopez-Gonzalez MJ, Lopez-Moreno JJ. 1991. Variability of the neutral mesospheric and lower thermospheric composition in the diurnal cycle. Planet Space Sci 39: 803–820. https://doi.org/10.1016/0032-0633(91)90086-P. [CrossRef] [Google Scholar]
- Rodrigo R, Lopez-Moreno JJ, Moreno F, Lopez-Puertas M, Molina A. 1986. Neutral atmospheric composition between 60 and 220 km – a theoretical model for mid-latitudes. Planet Space Sci 34: 723–743. https://doi.org/10.1016/0032-0633(86)90126-1. [CrossRef] [Google Scholar]
- Rottman G, Woods T, Snow M, DeToma G. 2001. The solar cycle variation in ultraviolet irradiance. Adv Space Res 27(12): 1927–1932. https://doi.org/10.1016/S0273-1177(01)00272-1. [NASA ADS] [CrossRef] [Google Scholar]
- Sander SP, Golden DM, Kurylo MJ, Moortgat GK, Wine PH, et al. 2011. Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, pp. 2011. [Google Scholar]
- Schmidt H, Brasseur GP, Charron M, Manzini E, Giorgetta MA, Diehl T, Fomichev VI, Kinnison D, Marsh D, Walters S. 2006. The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J Clim 19: 3903. https://doi.org/10.1175/JCLI3829.1. [CrossRef] [Google Scholar]
- Schott GL. 1960. Kinetic studies of hydroxyl radicals in shock waves. III. The OH concentration maximum in the hydrogen-oxygen reaction. J Chem Phys 32: 710–716. https://doi.org/10.1063/1.1730788. [CrossRef] [Google Scholar]
- Shepherd GG, Thuillier G, Cho Y-M, Duboin M-L, Evans WFJ, et al. 2012. The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: A 20 year perspective. Rev Geophys 50: RG2007. https://doi.org/10.1029/2012RG000390. [CrossRef] [Google Scholar]
- Simoneau P, Derelle S, Rommeluère S, Moreels G, Hersé M. 2011. Modélisation et mesures du rayonnement Nightglow induit par la molécule OH. Tech Rep. No. RT 2/17668 DOTA. [Google Scholar]
- Slanger TG, Cosby PC, Osterbrock DE, Stone RPS, Misch AA. 2003. The high-resolution light-polluted night-sky spectrum at Mount Hamilton, California. Publ Astron Soc Pacific 115: 869–878. https://doi.org/10.1086/376391. [CrossRef] [Google Scholar]
- Slanger TG, Cosby PC, Sharpee BD, Minschwaner KR, Siskind DE. 2006. O(1S → 1D, 3P) branching ratio as measured in the terrestrial nightglow. J Geophys Res: Space Phys 111(A12). https://doi.og/10.1029/2006JA011972. [Google Scholar]
- Smith FL III, Smith C. 1972. Numerical evaluation of Chapman’s grazing incidence integral ch(X, χ). J Geophys Res 77: 3592–3597. https://doi.org/10.1029/JA077i019p03592. [NASA ADS] [CrossRef] [Google Scholar]
- Swenson GR, Gardner CS. 1998. Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves. J Geophys Res 103: 6271–6294. https://doi.og/10.1029/97JD02985. [CrossRef] [Google Scholar]
- Takahashi H, Batista PP. 1981. Simultaneous measurements of OH(9,4), (8,3), (7,2), (6,2) and (5,1) bands in the airglow. J Geophys Res 86: 5632–5642. https://doi.org/10.1029/JA086iA07p05632. [CrossRef] [Google Scholar]
- Taylor MJ, Bishop MB, Taylor V. 1995a. All-sky measurements of short period waves imaged in the OI(557.7 nm), Na(589.2 nm) and near infrared OH and O2(0,1) nightglow emissions during the ALOHA-93 campaign. Geophys Res Lett 22: 2833–2836. https://doi.org/10.1029/95GL02946. [CrossRef] [Google Scholar]
- Taylor MJ, Turnbull DN, Lowe RP. 1995b. Spectrometric and imaging measurements of a spectacular gravity wave event observed during the ALOHA-93 campaign. Geophys Res Lett 22: 2849–2852. https://doi.org/10.1029/95GL02948. [CrossRef] [Google Scholar]
- Thekaekara MP. 1974. Extraterrestrial solar spectrum, 3000–6100 Å at 1-Å intervals. Appl Opt 13(3): 518–522. https://doi.org/10.1364/AO.13.000518. [NASA ADS] [CrossRef] [Google Scholar]
- Thomas L, Bowman MR. 1972. The diurnal variations of hydrogen and oxygen constituents in the mesosphere and lower thermosphere. J Atmos Terr Phys 34: 1843–1858. [CrossRef] [Google Scholar]
- Thuillier G, Foujols T, Bolsée D, Gillotay D, Hersé M, et al. 2009. SOLAR/SOLSPEC: Scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Sol Phys 257(1): 185–213. https://doi.org/10.1007/s11207-009-9361-6. [Google Scholar]
- Trainor DW, Ham DO, Kaufman F. 1973. Gas phase recombination of hydrogen and deuterium atoms. J Chem Phys 58: 4599–4609. https://doi.org/10.1063/1.1679024. [NASA ADS] [CrossRef] [Google Scholar]
- Turnbull DN, Lowe RP. 1989. New hydroxyl transition probabilities and their importance in airglow studies. Planet Space Sci 37: 723–738. https://doi.org/10.1016/0032-0633(89)90042-1. [CrossRef] [Google Scholar]
- Vargas F, Swenson G, Liu A, Gobbi D. 2007. O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J Geophys Res (Atmos) 112: D14102. https://doi.org/10.1029/2006JD007642. [CrossRef] [Google Scholar]
- von Savigny C, McDade IC, Eichmann K-U, Burrows JP. 2012. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations. Atmos Chem Phys 12: 8813–8828. https://doi.org/10.5194/acp-12-8813-2012. [CrossRef] [Google Scholar]
- Wiese WL, Fuhr JR, Deters TM. 1996. Atomic transition probabilities of carbon, nitrogen, and oxygen: A critical data compilation. American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, Washington, DC and Woodbury, NY. [Google Scholar]
- Yee J-H, Crowley G, Roble RG, Skinner WR, Burrage MD, Hays PB. 1997. Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions. J Geophys Res 102: 19949–19968. https://doi.org/10.1029/96JA01833. [CrossRef] [Google Scholar]
- Young RA, Black G. 1966. Excited-state formation and destruction in mixtures of atomic oxygen and nitrogen. J Chem Phys 44: 3741–3751. https://doi.org/10.1063/1.1726529. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.