Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2020022 | |
Published online | 09 June 2020 |
- Abdu MA, Bittencourt JA, Batista IS. 1981. Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J Geophys Res 86(A13): 11443–11446. https://doi.org/10.1029/JA086iA13p11443. [CrossRef] [Google Scholar]
- Abdu MA, Batista IS, Sobral JHA. 1992. A new aspect of magnetic declination control of equatorial spread F and F region dynamo. J Geophys Res 97(A10): 14897–14904. https://doi.org/10.1029/92JA00826. [CrossRef] [Google Scholar]
- Abdu MA, Iyer KN, de Medeiros RT, Batista IS, Sobral JHA. 2006. Thermospheric meridional wind control of the equatorial spread F and evening prereversal electric field. Geophys Res Lett 33(L07106): 1–4. https://doi.org/10.1029/2005GL024835. [Google Scholar]
- Abdu MA, Batista IS, Reinisch BW, de Sousa JR, Sobral JHA, Pedersen TR, Medeiros AF, Schuch NJ, de Paula ER, Grooves KM. 2009. Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread F development conditions and day-to-day-variability. J Geophys Res 114(A04308): 1–21. https://doi.org/10.1029/2008/JA013749. [Google Scholar]
- Abdu MA, Batista IS, Brum CGM, MacDougall JW, Santos AM, de Souza JR, Sobral JHA. 2010. Solar flux effects on the equatorial evening vertical drift and meridional winds over Brazil: A comparison between observational data and the IRI model and the HWM representations. Adv Space Res 46: 1078–1085. https://doi.org/10.1016/j.asr.2010.06.009. [CrossRef] [Google Scholar]
- Alken P. 2009. A quiet time empirical model of equatorial vertical plasma drift in the Peruvian sector based on 150 km echoes. J Geophys Res 114(A02308): 1–6. https://doi.org/10.1029/2008JA013751. [CrossRef] [Google Scholar]
- Anderson ON, Rusch DW. 1980. Composition of the nighttime ionospheric F1 region near the magnetic equator. J Geophys Res 85(A2): 569–574. https://doi.org/10.1029/JA085iA02p00569. [CrossRef] [Google Scholar]
- Bailey GJ, Balan N, Su YZ. 1997. The Sheffield University plasmasphere model – a review. J Atmos Sol Terr Phys 59(13): 1541–1552. https://doi.org/10.1016/S1364-6826(96)00155-1. [CrossRef] [Google Scholar]
- Batista IS, Abdu MA, Bittencourt JA. 1986. Equatorial F region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector. J Geophys Res 91(A11): 12055–12064. https://doi.org/10.1029/JA091iA11p12055. [CrossRef] [Google Scholar]
- Batista IS, de Medeiros RT, Abdu MA, de Souza JR, Bailey GJ, de Paula ER. 1996. Equatorial ionospheric vertical plasma drift model over the Brazilian region. J Geophys Res 101(A5): 10887–10892. https://doi.org/10.1029/95JA03833. [CrossRef] [Google Scholar]
- Bravo MA, Batista IS, de Souza JR, Foppiano AJ. 2017. Equatorial ionospheric response to different estimated disturbed electric fields as investigated using Sheffield University Plasmasphere Ionosphere Model at INPE. J Geophys Res 122(10): 10511–10527. https://doi.org/10.1002/2017JA024265. [CrossRef] [Google Scholar]
- Bravo MA, Batista IS, de Souza JR, Foppiano AJ. 2019. Ionospheric response to disturbed winds during the 29 October 2003 geomagnetic storm in the Brazilian sector. J Geophys Res 124(11): 9405–9419. https://doi.org/10.1029/2019JA027187. [CrossRef] [Google Scholar]
- Fejer BG, de Paula ER, González SA, Woodman RF. 1991. Average vertical and zonal F region plasma drifts over Jicamarca. J Geophys Res 96(A8): 13901–13906. https://doi.org/10.1029/91JA01171. [CrossRef] [Google Scholar]
- Fejer BG, de Paula ER, Heelis RA, Hanson WB. 1995. Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite. J Geophys Res 100(A4): 5769–5776. https://doi.org/10.1029/94JA03240. [CrossRef] [Google Scholar]
- Fejer BG, Jensen JW, Su S-Y. 2008. Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J Geophys Res 113(A05304): 1–10. https://doi.org/10.1029/2007JA012801. [CrossRef] [Google Scholar]
- Fejer BG, Hui D, Chau JL, Kudeki E. 2014. Altitudinal dependence of evening equatorial F region vertical plasma drifts. J Geophys Res 119: 5877–5890. https://doi.org/10.1002/2014/JA019949. [CrossRef] [Google Scholar]
- Fesen CG, Crowley G, Roble RG, Richmond AD, Fejer BG. 2000. Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophys Res Lett 27(13): 1851–1854. https://doi.org/10.1029/2000GL000061. [CrossRef] [Google Scholar]
- Hedin AE, Biondi MA, Burnside RG, Hernadez G, Johson RM, Killen TL, Mazaudier C, Meriwether JW, Salah JE, Sica RJ, Smith RW, Spencer NW, Wickwar VB, Virdi TS. 1991. Revised global model of thermosphere winds using a satellite and ground-based observations. J Geophys Res 96(A5): 7657–7688. https://doi.org/10.1029/91JA00251. [CrossRef] [Google Scholar]
- Heelis AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA. 1996. Empirical wind model for the upper, middle and lower atmosphere. J Atmos Sol Terr Phys 58: 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0. [CrossRef] [Google Scholar]
- Huba JD, Joyce G, Fedder JA. 2000. Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model. J Geophys Res 105(A10): 23035–23053. https://doi.org/10.1029/JA000035. [CrossRef] [Google Scholar]
- Kendall P. 1962. Geomagnetic control of diffusion in the F2-region of the ionosphere-I: The form of the diffusion operator. J Atmos Terr Phys 24: 805–811. https://doi.org/10.1016/0021-9169(62)90201-5. [CrossRef] [Google Scholar]
- Medeiros RT, Abdu MA, Batista IS. 1997. Thermospheric meridional wind at low latitude from measurements of F layer peak height. J Geophys Res 102(A7): 14531–14540. https://doi.org/10.1029/97JA00799. [CrossRef] [Google Scholar]
- Pingree JE, Fejer BG. 1987. On the height variation of the equatorial F region vertical plasma drifts. J Geophys Res 92(A5): 4763–4766. https://doi.org/10.1029/JA092iA05p04763. [CrossRef] [Google Scholar]
- Santos AM, Abdu MA, Sobral JHA, Mascarenhas M, Nogueira PAB. 2013. Equatorial evening prereversal vertical drift dependence on solar EUV flux and F10.7 index during quiet and disturbed periods. J Geophys Res 118(7): 4662–4671. https://doi.org/10.1002/jgra.50438. [CrossRef] [Google Scholar]
- Scherliess L, Fejer BG. 1999. Radar and satellite global equatorial F region vertical drift model. J Geophys Res 104(A4): 6829–6842. https://doi.org/10.1029/1999JA900025. [CrossRef] [Google Scholar]
- Souza JR, Abdu MA, Batista IS, Bailey GJ. 2000. Determination of vertical plasma drift and meridional wind using the Sheffield University Plasmasphere Ionosphere Model and ionospheric data at equatorial and low latitudes in Brazil: Summer solar minimum and maximum conditions. J Geophys Res 105(A6): 12813–12821. https://doi.org/10.1029/1999JA000348. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, et al. 2015. International geomagnetic reference field: the 12th generation. Earth, Planets Space 67(79): 1–19. https://doi.org/10.1186/s40623-015-0228-9. [Google Scholar]
- Tsunoda R. 1985. Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in the integrated E region Pedersen conductivity. J Geophys Res 90(A1): 447–456. https://doi.org/10.1029/JA090Ia01P00447. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.