Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Scientific Advances from the European Commission H2020 projects on Space Weather
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2020007 | |
Published online | 28 February 2020 |
- Acebal AO, Sojka JJ. 2011. A flare sensitive 3 h solar flux radio index for space weather applications. Space Weather 9: S07004. https://doi.org/10.1029/2010SW000585. [CrossRef] [Google Scholar]
- Agueda N, Lario D. 2016. Release history and transport parameters of relativistic solar electrons inferred from near-the-sun in situ observations. Astrophys J 829: 131. https://doi.org/10.3847/0004-637X/829/2/131. [NASA ADS] [CrossRef] [Google Scholar]
- Agueda N, Klein K-L, Vilmer N, Rodrguez-Gasén R, Malandraki OE, et al. 2014. Release timescales of solar energetic particles in the low corona. Astron Astrophys 570: A5. https://doi.org/10.1051/0004-6361/201423549. [Google Scholar]
- Anastasiadis A, Papaioannou A, Sandberg I, Georgoulis M, Tziotziou K, Kouloumvakos A, Jiggens P. 2017. Predicting flares and solar energetic particle events: The FORSPEF tool. Sol Phys 292: 134. https://doi.org/10.1007/s11207-017-1163-7. [Google Scholar]
- Asai K, Ishida Y, Kojma M, Maruyama K, Misawa H, Yoshimi N. 1995. Multi-station system for solar wind observations using the interplanetary scintillation method. J Geomagn Geoelectr 47(11): 1107–1112. https://doi.org/10.5636/jgg.47.1107. [CrossRef] [Google Scholar]
- Bain HM, Krucker S, Glesener L, Lin RP. 2012. Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys J 750: 44. https://doi.org/10.1088/0004-637X/750/1/44. [NASA ADS] [CrossRef] [Google Scholar]
- Bain HM, Krucker S, Saint-Hilaire P, Raftery CL. 2014. Radio imaging of a type IVM radio burst on the 14th of August 2010. Astrophys J 782: 43. https://doi.org/10.1088/0004-637X/782/1/43. [CrossRef] [Google Scholar]
- Balch CC. 1999. SEC proton prediction model: verification and analysis. Rad Meas 30: 231–250. https://doi.org/10.1016/S1350-4487(99)00052-9. [CrossRef] [Google Scholar]
- Bale SD, Goetz K, Harvey PR, Turin P, Bonnell JW, et al. 2016. The FIELDS instrument suite for solar probe plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci Rev 204: 49–82. https://doi.org/10.1007/s11214-016-0244-5. [Google Scholar]
- Bastian TS, Pick M, Kerdraon A, Maia D, Vourlidas A. 2001. The coronal mass ejection of 1998 April 20: Direct imaging at radio wavelengths. Astrophys J Lett 558: L65–L69. https://doi.org/10.1086/323421. [CrossRef] [Google Scholar]
- Benz AO, Monstein C, Meyer H, Manoharan PK, Ramesh R, Altyntsev A, Lara A, Paez J, Cho K-S. 2009. A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104: 277–285. https://doi.org/10.1007/s11038-008-9267-6. [NASA ADS] [CrossRef] [Google Scholar]
- Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell L-A, Reinisch B. 2014. The international reference ionosphere 2012 – a model of international collaboration. J Space Weather Space Clim 4: A07. https://doi.org/10.1051/swsc/2014004. [CrossRef] [Google Scholar]
- Bisi M, Fallows R, Breen A, ONeill I. 2010a. Interplanetary scintillation observations of stream interaction regions in the solar wind. Sol Phys 261(1): 149–172. [CrossRef] [Google Scholar]
- Bisi MM, Breen AR, Jackson BV, Fallows RA, Walsh AP, et al. 2010b. From the sun to the earth: The 13 May 2005 coronal mass ejection. Sol Phys 265: 49–127. https://doi.org/10.1007/s11207-010-9602-8. [CrossRef] [Google Scholar]
- Bisi MM, Americo Gonzalez-Esparza J, Jackson B, Aguilar-Rodriguez E, Tokumaru M, et al. 2017. The worldwide interplanetary scintillation (IPS) stations (WIPSS) network in support of space-weather science and forecasting. In: EGU General Assembly Conference Abstracts, 23–28 April, Vienna, Austria, Vol. 19, p. 13454. [Google Scholar]
- Boteler DH, Pirjola RJ, Nevanlinna H. 1998. The effects of geomagnetic disturbances on electrical systems at the earth’s surface. Adv Space Res 22: 17–27. https://doi.org/10.1016/S0273-1177(97)01096-X. [CrossRef] [Google Scholar]
- Bougeret J-L, Kaiser ML, Kellogg PJ, Manning R, Goetz K, et al. 1995. Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci Rev 71: 231–263. https://doi.org/10.1007/BF00751331. [Google Scholar]
- Bougeret JL, Goetz K, Kaiser ML, Bale SD, Kellogg PJ, et al. 2008. S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci Rev 136: 487–528. https://doi.org/10.1007/s11214-007-9298-8. [Google Scholar]
- Carley EP, Long DM, Byrne JP, Zucca P, Bloomfield DS, McCauley J, Gallagher PT. 2013. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat Phys 9: 811–816. https://doi.org/10.1038/nphys2767. [NASA ADS] [CrossRef] [Google Scholar]
- Carley EP, Vilmer N, Simões PJA, Fearraigh BÓ. 2017. Estimation of a coronal mass ejection magnetic field strength using radio observations of gyrosynchrotron radiation. A&A 608: A137. https://doi.org/10.1051/0004-6361/201731368. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Lanzerotti LJ, de Paula ER, Vo HB. 2006. Observed solar radio burst effects on GPS/Wide Area Augmentation System carrier-to-noise ratio. Space Weather 4: S10006. https://doi.org/10.1029/2006SW000254. [CrossRef] [Google Scholar]
- Cerruti AP, Kintner PM, Gary DE, Mannucci AJ, Meyer RF, Doherty P, Coster AJ. 2008. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather 6: S10D07. https://doi.org/10.1029/2007SW000375. [CrossRef] [Google Scholar]
- Cranmer SR. 2009. Coronal Holes. Liv Rev Sol Phys 6(1): 3. https://doi.org/10.12942/lrsp-2009-3. [Google Scholar]
- Cremades H, Iglesias FA, St. Cyr OC, Xie H, Kaiser ML, Gopalswamy N. 2015. Low-frequency type-II radio detections and coronagraph data employed to describe and forecast the propagation of 71 CMEs/shocks. Sol Phys 290: 2455–2478. https://doi.org/10.1007/s11207-015-0776-y. [CrossRef] [Google Scholar]
- Cucinotta FA, Hu S, Schwadron NA, Kozarev K, Townsend LW, Kim M-HY. 2010. Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather 8: S00E09. https://doi.org/10.1029/2010SW000572. [CrossRef] [Google Scholar]
- Dagkesamanskii RD. 2009. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: Yesterday, today, and tomorrow. Phys Uspekhi 52(11): 1159. http://stacks.iop.org/1063-7869/52/i=11/a=R09. [CrossRef] [Google Scholar]
- Dauphin C, Vilmer N, Krucker S. 2006. Observations of a soft X-ray rising loop associated with a type II burst and a coronal mass ejection in the 03 November 2003 X-ray flare. A&A 455: 339–348. https://doi.org/10.1051/0004-6361:20054535. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Denardini CM, Dasso S, Gonzalez-Esparza JA. 2016. Review on space weather in Latin America. 2. The research networks ready for space weather. Adv Space Res 58(10): 1940–1959. Space and Geophysical Research related to Latin America – Part 2, https://doi.org/10.1016/j.asr.2016.03.013. [CrossRef] [Google Scholar]
- Dresing N, Gómez-Herrero R, Heber B, Klassen A, Temmer M, Veronig A. 2018. Long-lasting injection of solar energetic electrons into the heliosphere. A&A 613: A21. https://doi.org/10.1051/0004-6361/201731573. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dulk GA, Marsh KA. 1982. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys J 259: 350–358. https://doi.org/10.1086/160171. [CrossRef] [Google Scholar]
- Fallows RA, Asgekar A, Bisi MM, Breen AR, ter-Veen S. 2013. The dynamic spectrum of interplanetary scintillation: First solar wind observations on LOFAR. Sol Phys 285: 127–139. https://doi.org/10.1007/s11207-012-9989-5. [NASA ADS] [CrossRef] [Google Scholar]
- Fallows RA, Coles WA, McKay-Bukowski D, Vierinen J, Virtanen II, et al. 2014. Broadband meter-wavelength observations of ionospheric scintillation. J Geophys Res (Space Phys) 119: 10. https://doi.org/10.1002/2014JA020406. [Google Scholar]
- Fallows RA, Bisi MM, Forte B, Ulich T, Konovalenko AA, Mann G, Vocks C. 2016. Separating nightside interplanetary and ionospheric scintillation with LOFAR. Astrophys J Lett 828: L7. https://doi.org/10.3847/2041-8205/828/1/L7. [NASA ADS] [CrossRef] [Google Scholar]
- Fleishman GD, Nita GM, Kontar EP, Gary DE. 2016. Narrowband gyrosynchrotron bursts: Probing electron acceleration in solar flares. Astrophys J 826: 38. https://doi.org/10.3847/0004-637X/826/1/38. [CrossRef] [Google Scholar]
- Gary DE. 2016. Role of solar radio observations in space weather. In: 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 21–25 August, Seoul, South Korea, pp. 1–4. https://doi.org/10.1109/URSIAP-RASC.2016.7883552. [Google Scholar]
- Glover A, Hilgers A, Rosenqvist L, Bourdarie S. 2008. Interplanetary proton cumulated fluence model update. Adv Space Res 42: 1564–1568. https://doi.org/10.1016/j.asr.2007.08.023. [CrossRef] [Google Scholar]
- Grechnev VV, Lesovoi SV, Smolkov GY, Krissinel BB, Zandanov VG, et al. 2003. The Siberian Solar Radio Telescope: The current state of the instrument, observations, and data. Sol Phys 216: 239–272. https://doi.org/10.1023/A:1026153410061. [NASA ADS] [CrossRef] [Google Scholar]
- Guidice DA. 1979. Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01731. Report. In: Bulletin of the American Astronomical Society, Vol. 11, American Astronomical Society, pp. 311–312. [Google Scholar]
- Jackson B, Clover J, Hick P, Buffington A, Bisi M, Tokumaru M. 2013. Inclusion of real-time in-situ measurements into the UCSD time-dependent tomography and its use as a forecast algorithm. Sol Phys 285(1–2): 151–165. [CrossRef] [Google Scholar]
- Jackson BV, Odstrcil D, Yu H-S, Hick PP, Buffington A, et al. 2015. The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3-D MHD prediction model. Space Weather 13: 104–115. https://doi.org/10.1002/2014SW001130. [CrossRef] [Google Scholar]
- Jensen EA, Hick PP, Bisi MM, Jackson BV, Clover J, Mulligan T. 2010. Faraday rotation response to coronal mass ejection structure. Sol Phys 265: 31–48. https://doi.org/10.1007/s11207-010-9543-2. [CrossRef] [Google Scholar]
- Kahler SW. 2007. Solar sources of heliospheric energetic electron events – shocks or flares? Space Sci Rev 129: 359–390. https://doi.org/10.1007/s11214-007-9143-0. [NASA ADS] [CrossRef] [Google Scholar]
- Kappenman JG. 1996. Geomagnetic Storms and Their Impact on Power Systems. IEEE Power Eng Rev 16(5): 5–. https://doi.org/10.1109/MPER.1996.491910. [CrossRef] [Google Scholar]
- Kerdraon A, Delouis J-M. 1997. The Nançay Radioheliograph. In: Coronal Physics from Radio and Space Observations, Vol. 483 of Lecture Notes in Physics, Trottet G (Ed.), Springer Verlag, Berlin, pp. 192. https://doi.org/10.1007/BFb0106458 [NASA ADS] [CrossRef] [Google Scholar]
- Klein K-L, Trottet G, Klassen A. 2010. Energetic particle acceleration and propagation in strong CME-less flares. Sol Phys 263: 185–208. https://doi.org/10.1007/s11207-010-9540-5. [NASA ADS] [CrossRef] [Google Scholar]
- Klein K-L, Matamoros CS, Zucca P. 2018. Solar radio bursts as a tool for space weather forecasting. C R Phys 19: 36–42. https://doi.org/10.1016/j.crhy.2018.01.005. [CrossRef] [Google Scholar]
- Kontar EP, Yu S, Kuznetsov AA, Emslie AG, Alcock B, Jeffrey NLS, Melnik VN, Bian NH, Subramanian P. 2017. Imaging spectroscopy of solar radio burst fine structures. Nat Commun 8: 1515. https://doi.org/10.1038/s41467-017-01307-8. [Google Scholar]
- Kooi JE, Fischer PD, Buffo JJ, Spangler SR. 2017. VLA measurements of Faraday rotation through coronal mass ejections. Sol Phys 292: 56. https://doi.org/10.1007/s11207-017-1074-7. [NASA ADS] [CrossRef] [Google Scholar]
- Kouloumvakos A, Nindos A, Valtonen E, Alissandrakis CE, Malandraki O, Tsitsipis P, Kontogeorgos A, Moussas X, Hillaris A. 2015. Properties of solar energetic particle events inferred from their associated radio emission. A&A 580: A80. https://doi.org/10.1051/0004-6361/201424397. [CrossRef] [EDP Sciences] [Google Scholar]
- Kuroda N, Gary DE, Wang H, Fleishman GD, Nita GM, Jing J. 2018. Three-dimensional forward-fit modeling of the hard X-ray and microwave emissions of the 2015 June 22 M6.5 Flare. Astrophys J 852: 32. https://doi.org/10.3847/1538-4357/aa9d98. [CrossRef] [Google Scholar]
- Laitinen T, Effenberger F, Kopp A, Dalla S. 2018. The effect of turbulence strength on meandering field lines and solar energetic particle event extents. J Space Weather Space Clim 8(27): A13. https://doi.org/10.1051/swsc/2018001. [CrossRef] [Google Scholar]
- Lario D, Kwon R-Y, Riley P, Raouafi NE. 2017. On the Link between the release of solar energetic particles measured at widespread heliolongitudes and the properties of the associated coronal shocks. Astrophys J 847: 103. https://doi.org/10.3847/1538-4357/aa89e3. [Google Scholar]
- Lecacheux A. 2000. The Nançay Decameter Array: A useful step towards giant, new generation radio telescopes for long wavelength radio astronomy. Washington DC Am Geophys Union Geophys Monogr Ser 119: 321. https://doi.org/10.1029/GM119p0321. [Google Scholar]
- Magdalenić J, Marqué C, Krupar V, Mierla M, Zhukov AN, Rodriguez L, Maksimović M, Cecconi B. 2014. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys J 791: 115. http://doi.org/10.1088/0004-637X/791/2/115. [Google Scholar]
- Maia DJF, Gama R, Mercier C, Pick M, Kerdraon A, Karlický M. 2007. The radio-coronal mass ejection event on 2001 April 15. Astrophys J 660: 874–881. https://doi.org/10.1086/508011. [CrossRef] [Google Scholar]
- Maksimovic M, Bale SD, Vaivads A, Krasnoselskikh V, Chust T, et al. 2007. A radio and plasma wave experiment for the solar orbiter mission. In: Second Solar Orbiter Workshop, Vol. 641 of ESA Special Publication, p. 38. [Google Scholar]
- Marqué C, Klein K-L, Monstein C, Opgenoorth H, Pulkkinen A, Buchert S, Krucker S, Van Hoof R, Thulesen P. 2018. Solar radio emission as a disturbance of aeronautical radionavigation. J Space Weather Space Clim 8(27): A42. https://doi.org/10.1051/swsc/2018029. [CrossRef] [Google Scholar]
- McKay-Bukowski D, Vierinen J, Virtanen II, Fallows R, Postila M, et al. 2015. KAIRA: The Kilpisjärvi Atmospheric Imaging Receiver Array – system overview and first results. IEEE Trans Geosci Remote Sens 53: 1440–1451. https://doi.org/10.1109/TGRS.2014.2342252. [CrossRef] [Google Scholar]
- Mei Y, Wang F, Wang W, Chen L, Liu Y, Deng H, Dai W, Liu C, Yan Y. 2018. GPU-based high-performance imaging for Mingantu spectral radioheliograph. PASP 130(1): 014503. https://doi.org/10.1088/1538-3873/aa9608. [CrossRef] [Google Scholar]
- Mejia-Ambriz JC, Villanueva-Hernandez P, Gonzalez-Esparza JA, Aguilar-Rodriguez E, Jeyakumar S. 2010. Observations of interplanetary scintillation (IPS) using the Mexican Array Radio Telescope (MEXART). Sol Phys 265: 309–320. https://doi.org/10.1007/s11207-010-9562-z. [CrossRef] [Google Scholar]
- Melrose DB. 2017. Coherent emission mechanisms in astrophysical plasmas. Rev Mod Plasma Phys 1: 5. https://doi.org/10.1007/s41614-017-0007-0. [Google Scholar]
- Morosan DE, Gallagher PT, Zucca P, Fallows R, Carley EP, et al. 2014. LOFAR tied-array imaging of type III solar radio bursts. A&A 568: A67. https://doi.org/10.1051/0004-6361/201423936. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Morosan DE, Gallagher PT, Zucca P, O’Flannagain A, Fallows R, et al. 2015. LOFAR tied-array imaging and spectroscopy of solar S bursts. A&A 580: A65. https://doi.org/10.1051/0004-6361/201526064. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Muhammad B, Alberti V, Marassi A, Cianca E, Messerotti M. 2015. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst event. J Space Weather Space Clim 5(27): A32. https://doi.org/10.1051/swsc/2015034. [CrossRef] [Google Scholar]
- Nakajima H, Nishio M, Enome S, Shibasaki K, Takano T, et al. 1994. The Nobeyama radioheliograph. IEEE Proc 82: 705–713. [Google Scholar]
- Nelson GJ, Melrose DB. 1985. Type II bursts, CSIRO, pp. 333–359. [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- Patil AH, Yatawatta S, Koopmans LVE, de Bruyn AG, Brentjens MA, et al. 2017. Upper limits on the 21 cm epoch of reionization power spectrum from one night with LOFAR. Astrophys J 838: 65. https://doi.org/10.3847/1538-4357/aa63e7. [Google Scholar]
- Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection. Astron Astrophys Rev 16: 1–153. https://doi.org/10.1007/s00159-008-0013-x. [CrossRef] [Google Scholar]
- Pick M, Stenborg G, Démoulin P, Zucca P, Lecacheux A. 2016. Homologous solar events on 2011 January 27: Build-up and propagation in a complex coronal environment. Astrophys J 823: 5. https://doi.org/10.3847/0004-637X/823/1/5. [NASA ADS] [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Mushini SC, Richardson IG. 2012. Toward the probabilistic forecasting of high-latitude GPS phase scintillation. Space Weather 10: S08005. https://doi.org/10.1029/2012SW000800. [CrossRef] [Google Scholar]
- Ramesh R, Subramanian KR, Sundararajan MS, Sastry CV. 1998. The Gauribidanur Radioheliograph. Sol Phys 181(2): 439–453. https://doi.org/10.1023/A:1005075003370. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175(1–4): 53–92. https://doi.org/10.1007/s11214-013-9958-9. [Google Scholar]
- Reid HAS, Kontar EP. 2017. Imaging spectroscopy of type U and J solar radio bursts with LOFAR. A&A 606: A141. https://doi.org/10.1051/0004-6361/201730701. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Reid HAS, Kontar EP. 2018. Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport. A&A 614: A69. https://doi.org/10.1051/0004-6361/201732298. [CrossRef] [EDP Sciences] [Google Scholar]
- Richardson IG. 2018. Solar wind stream interaction regions throughout the heliosphere. Liv Rev Sol Phys 15: 1. https://doi.org/10.1007/s41116-017-0011-z. [Google Scholar]
- Rishbeth H, Williams PJS. 1985. The EISCAT ionospheric radar – the system and its early results. Astron Soc 26: 478–512. [Google Scholar]
- Selvakumaran R, Maurya AK, Gokani SA, Veenadhari B, Kumar S, Venkatesham K, Phanikumar DV, Singh AK, Siingh D, Singh R. 2015. Solar flares induced D-region ionospheric and geomagnetic perturbations. J Atmos Sol-Terr Phys 123: 102–112. https://doi.org/10.1016/j.jastp.2014.12.009. [CrossRef] [Google Scholar]
- Shimwell TW, Röttgering HJA, Best PN, Williams WL, Dijkema TJ, et al. 2017. The LOFAR two-metre sky survey. I. Survey description and preliminary data release. A&A 598: A104. https://doi.org/10.1051/0004-6361/201629313. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Stappers BW, Hessels JWT, Alexov A, Anderson K, Coenen T, et al. 2011. Observing pulsars and fast transients with LOFAR. A&A 530: A80. https://doi.org/10.1051/0004-6361/201116681. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Sukumar S, Velusamy T, Pramesh Rao A, Swarup G, Bagri DS. 1988. Ooty synthesis radio telescope – Design and performance. Bull Astron Soc India 16: 93–110. [Google Scholar]
- Tiburzi C, Verbiest JPW, Shaifullah GM, Janssen GH, Anderson JM, et al. 2019. On the usefulness of existing solar wind models for pulsar timing corrections. Mon Not R Astron Soc 487: 394–408. https://doi.org/10.1093/mnras/stz1278. [Google Scholar]
- Trichtchenko L, Boteler DH. 2001. Specification of geomagnetically induced electric fields and currents in pipelines. J Geophys Res 106: 21039–21048. https://doi.org/10.1029/2000JA000207. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: A review. J Geophys Res (Space Phys) 111: A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Lakhina GS, Li G, Zank GP. 2009. A brief review of solar flare effects on the ionosphere. Radio Sci 44: RS0A17. https://doi.org/10.1029/2008RS004029. [CrossRef] [Google Scholar]
- van de Kamp M, Cannon PS, Terkildsen M. 2009. Effect of the ionosphere on defocusing of space-based radars. Radio Sci 44: RS1003. https://doi.org/10.1029/2007RS003808. [CrossRef] [Google Scholar]
- van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, et al. 2013. LOFAR: The LOw-Frequency ARray. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vilà-Valls J, Closas P, Curran JT. 2017. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation. J Space Weather Space Clim 7(27): A26. https://doi.org/10.1051/swsc/2017020. [CrossRef] [Google Scholar]
- Vocks C, Mann G, Breitling F, Bisi MM, Dąbrowski B, et al. 2018. LOFAR observations of the quiet solar corona. A&A 614: A54. https://doi.org/10.1051/0004-6361/201630067. [Google Scholar]
- Wang C. 2010. New chains of space weather monitoring stations in China. Space Weather 8: S08001. https://doi.org/10.1029/2010SW000603. [CrossRef] [Google Scholar]
- Warmuth A, Mann G. 2004. The application of radio diagnostics to the study of the solar drivers of space weather. In: Lecture Notes in Physics, Berlin Springer Verlag, Vol. 656, Scherer K, Fichter H, Herber B (Ed.), Springer Verlag, Berlin, p. 49. https://doi.org/10.1007/978-3-540-31534-6-3. [CrossRef] [Google Scholar]
- Wei LH, Homeier N, Gannon JL. 2013. Surface electric fields for North America during historical geomagnetic storms. Space Weather 11: 451–462. https://doi.org/10.1002/swe.20073. [CrossRef] [Google Scholar]
- White SM, Benz AO, Christe S, Fárnk F, Kundu MR, et al. 2011. The relationship between solar radio and hard X-ray emission. Space Sci Rev 159(1–4): 225–261. https://doi.org/10.1007/s11214-010-9708-1. [CrossRef] [Google Scholar]
- Wild JP. 1950. Observations of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. III. Isolated Bursts. Aust J Sci Res A Phys Sci 3: 541. [Google Scholar]
- Wild JP, Sheridan KV, Trent GH. 1959. The transverse motions of the sources of solar radio bursts. In: URSI Symp. 1: Paris Symposium on Radio Astronomy, Vol. 9 of IAU Symposium, Bracewell RN (Ed.), Stanford University Press, Stanford, CA, p. 176. [Google Scholar]
- Xapsos MA, Stauffer C, Jordan T, Barth JL, Mewaldt RA. 2007. Model for cumulative solar heavy ion energy and linear energy transfer spectra. IEEE Trans Nucl Sci 54(6): 1985–1989. https://doi.org/10.1109/TNS.2007.910850. [CrossRef] [Google Scholar]
- Yasyukevich Y, Astafyeva E, Padokhin A, Ivanova V, Syrovatskii S, Podlesnyi A. 2018. The 6 September 2017 XClass solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space Weather 16: 1013–1027. https://doi.org/10.1029/2018SW001932. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yu H-S, Jackson BV, Hick PP, Buffington A, Odstrcil D, Wu C-C, Davies JA, Bisi MM, Tokumaru M. 2015. 3D reconstruction of interplanetary scintillation (IPS) remote-sensing data: Global solar wind boundaries for driving 3D-MHD models. Sol Phys 290: 2519–2538. https://doi.org/10.1007/s11207-015-0685-0. [CrossRef] [Google Scholar]
- Žigman V, Grubor D, Šulić D. 2007. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J Atmos Sol-Terr Phys 69: 775–792. https://doi.org/10.1016/j.jastp.2007.01.012. [CrossRef] [Google Scholar]
- Zucca P, Carley EP, McCauley J, Gallagher PT, Monstein C, McAteer RTJ. 2012. Observations of low frequency solar radio bursts from the Rosse solar-terrestrial observatory. Sol Phys 280: 591–602. https://doi.org/10.1007/s11207-012-9992-x. [Google Scholar]
- Zucca P, Núñez M, Klein K. 2017. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events. J Space Weather Space Clim 7(27): A13. https://doi.org/10.1051/swsc/2017011. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.