Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 43 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2020046 | |
Published online | 25 September 2020 |
- Akasofu S-I. 1980. The solar wind-magnetosphere energy coupling and magnetospheric disturbances. Planet Space Sci 28(5): 495–509. https://doi.org/10.1016/0032-0633(80)90031-8. [CrossRef] [Google Scholar]
- Bentley S, Watt C, Owens M, Rae I. 2018. ULF wave activity in the magnetosphere: Resolving solar wind interdependencies to identify driving mechanisms. J Geophys Res Space Phys 123(4): 2745–2771. https://doi.org/10.1002/2017JA024740. [CrossRef] [Google Scholar]
- Borovsky JE, Denton MH. 2006. Differences between CME-driven storms and CIR-driven storms. J Geophys Res Space Phys 111(A7): A07S08. https://doi.org/10.1029/2005JA011447. [Google Scholar]
- Chiu MC, Von-Mehlem UI, Willey CE, Betenbaugh TM, Maynard JJ, et al. 1998. ACE spacecraft. Space Sci Rev 86(1): 257–284. https://doi.org/10.1023/A:1005002013459. [CrossRef] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2014. Revisiting the sunspot number. Space Sci Rev 186(1–4): 35–103. https://doi.org/10.1007/s11214-014-0074-2. [CrossRef] [Google Scholar]
- Clilverd M, Menk F, Milinevski G, Sandel B, Goldstein J, et al. 2003. In situ and ground-based intercalibration measurements of plasma density at L = 2.5. J Geophys Res Space Phys 108(A10): 1365. https://doi.org/10.1029/2003JA009866. [CrossRef] [Google Scholar]
- Engebretson M, Glassmeier K-H, Stellmacher M, Hughes WJ, Lühr H. 1998. The dependence of high-latitude PcS wave power on solar wind velocity and on the phase of high-speed solar wind streams. J Geophys Res Space Phys (1978–2012) 103(A11): 26271–26283. https://doi.org/10.1029/97JA03143. [CrossRef] [Google Scholar]
- Fairfield DH, Cahill LJ Jr. 1966. Transition region magnetic field and polar magnetic disturbances. J Geophys Res 71(1): 155–169. https://doi.org/10.1029/JZ071i001p00155. [CrossRef] [Google Scholar]
- Frigo M, Johnson SG. 1998. FFTW: An adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3: 1381–1384. https://doi.org/10.1109/ICASSP.1998.681704. [Google Scholar]
- Greene W. 1997. Econometric Analysis. Prentice-Hall international editions. Prentice Hall. ISBN 9780023466021. https://books.google.fi/books?id=j09oTRcQ-xkC. [Google Scholar]
- Hamming RW. 1973. Numerical Methods for Scientists and Engineers. Series in Pure and Applied Math. 2nd edn. Dover http://books.google.fi/books?id=Y3YSCmWBVwoC. [Google Scholar]
- Harris FJ. 1978. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE 66(1): 51–83. https://doi.org/10.1109/PROC.1978.10837. [Google Scholar]
- Hynönen R. 2013. Geomagnetic activity and its sources during modern solar maximum. Master’s thesis. University of Helsinki http://urn.fi/URN:NBN:fi-fe2017112252465. [Google Scholar]
- Jacobs JA, Kato Y, Matsushita S, Troitskaya VA. 1964. Classification of geomagnetic micropulsations. J Geophys Res 69(1): 180–181 https://doi.org/10.1029/JZ069i001p00180. [CrossRef] [Google Scholar]
- Kangas J, Guglielmi A, Pokhotelov O. 1998. Morphology and physics of short-period magnetic pulsations. Space Sci Rev 83(3–4): 435–512. https://doi.org/10.1023/A:1005063911643. [CrossRef] [Google Scholar]
- Kepko L, Spence HE. 2003. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J Geophys Res Space Phys 108(A6): 1–5. https://doi.org/10.1029/2002JA009676. [CrossRef] [Google Scholar]
- Kepko L, Spence HE, Singer H. 2002. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys Res Lett 29(8): 39-1–39-4. https://doi.org/10.1029/2001GL014405. [CrossRef] [Google Scholar]
- Kessel R, Mann I, Fung S, Milling D, O’Connell N. 2004. Correlation of Pc5 wave power inside and outside themagnetosphere during high speed streams. Ann Geophys 22(2): 629–641. https://doi.org/10.5194/angeo-22-629-2004. [CrossRef] [Google Scholar]
- Kessel RL. 2008. Solar wind excitation of Pc5 fluctuations in the magnetosphere and on the ground. J Geophys Res Space Phys (1978–2012) 113(A4): 1–2. https://doi.org/10.1029/2007JA012255. [Google Scholar]
- Kozyreva O, Pilipenko V, Engebretson M, Klimushkin DY, Mager P. 2016. Correspondence between the ULF wave power spatial distribution and auroral oval boundaries. Sol Terr Phys 2(2): 46–65. https://doi.org/10.12737/20999. [Google Scholar]
- Lee L. 1982. Transmission of Alfvén waves through the rotational discontinuity at magnetopause. Planet Space Sci 30(11): 1127–1132. https://doi.org/10.1016/0032-0633(82)90123-4. [CrossRef] [Google Scholar]
- Lepidi S, Francia P. 2002. Low frequency (1–4 mHz) geomagnetic field fluctuation power: latitudinal dependence and relation with solar wind parameters. ESASP 477: 447–450. [Google Scholar]
- Liou K, Sibeck DG. 2018. Dawn-dusk auroral oval oscillations associated with high-speed solar wind. J Geophys Res Space Phys 123: 600–610. https://doi.org/10.1002/2017JA024527. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016. On the origins and timescales of geoeffective IMF. Space Weather 14(6): 406–432. https://doi.org/10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Mathie R, Mann I. 2001. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J Geophys Res Space Phys 106(A12): 29783–29796. https://doi.org/10.1029/2001JA000002. [CrossRef] [Google Scholar]
- McComas D, Bame S, Barker P, Feldman W, Phillips J, Riley P, Griffee J. 1998. Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. The Advanced Composition Explorer Mission 563–612. https://doi.org/10.1007/978-94-011-4762-0_20. [CrossRef] [Google Scholar]
- Menk FW, Waters CL. 2013. Magnetoseismology: Ground-based Remote Sensing of Earth’s Magnetosphere. John Wiley & Sons, ISBN: 9783527652075. [CrossRef] [Google Scholar]
- Mursula K, Holappa L, Lukianova R. 2016. Seasonal solar wind speeds for the last 100 years: Unique coronal hole structures during the peak and demise of the Grand Modern Maximum. Geophys Res Lett 44, 30–36. https://doi.org/10.1002/2016GL071573. [CrossRef] [Google Scholar]
- Nykyri K. 2013. Impact of MHD shock physics on magnetosheath asymmetry and Kelvin-Helmholtz instability. J Geophys Res Space Phys 118(8): 5068–5081. https://doi.org/10.1002/jgra.50499. [CrossRef] [Google Scholar]
- Pahud D, Rae I, Mann I, Murphy K, Amalraj V. 2009. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence. J Atmos Sol-Terr Phys 71(10): 1082–1092. https://doi.org/10.1016/j.jastp.2008.12.004. [CrossRef] [Google Scholar]
- Peitso P, Tanskanen E, Pulkkinen T, Mursula K. 2018. High-frequency geomagnetic fluctuations at auroral oval and polar cap. Space Weather. https://doi.org/10.1029/2018SW001841. [Google Scholar]
- Pilipenko V, Kozyreva O, Lorentzen D, Baddeley L. 2018. The correspondence between dayside long-period geomagnetic pulsations and the open-closed field line boundary. J Atmos Sol Terr Phys 170: 64–74. https://doi.org/10.1016/j.jastp.2018.02.012. [CrossRef] [Google Scholar]
- Pilipenko V, Romanova N, Simms L. 2008. ULF wave power index for space weather applications. In: EUR 23348 - COST Action 724 – Developing the scientific basis for monitoring, modelling and predicting Space Weather, 230-237. Office for Official Publications of the European Union, Luxembourg, p. 230. [Google Scholar]
- Pilipenko V, Watermann J, Popov V, Papitashvili V. 2001. Relationship between auroral electrojet and Pc5 ULF waves. J Atmos Sol Terr Phys 63(14): 1545–1557. https://doi.org/10.1016/S1364-6826(01)00031-1. [CrossRef] [Google Scholar]
- Potapov A. 2013. ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere. J Geophys Res Space Phys 118(10): 6465–6477. https://doi.org/10.1002/2013JA019119. [CrossRef] [Google Scholar]
- Rae IJ, Mann IR, Murphy KR, Ozeke LG, Milling DK, Chan AA, Elkington SR, Honary F. 2012. Ground-based magnetometer determination of in situ Pc4–5 ULF electric field wave spectra as a function of solar wind speed. J Geophys Res Space Phys 117(A4): A04221. https://doi.org/10.1029/2011JA017335. [Google Scholar]
- Rao DRK, Gupta JC. 1978. Some features of Pc5 pulsations during a solar cycle. Planet Space Sci 26(1): 1–20. https://doi.org/10.1016/0032-0633(78)90032-6. [CrossRef] [Google Scholar]
- Regi M, De Lauretis M, Francia P. 2015. Pc5 geomagnetic fluctuations in response to solar wind excitation and their relationship with relativistic electron fluxes in the outer radiation belt. Earth Planet Space 67(1): 9. https://doi.org/10.1186/s40623-015-0180-8. [CrossRef] [Google Scholar]
- Regi M, De Lauretis M, Redaelli G, Francia P. 2016. ULF geomagnetic and polar cap potential signatures in the temperature and zonal wind reanalysis data in Antarctica. J Geophys Res Space Phys 121(1): 286–295. https://doi.org/10.1002/2015JA022104. [CrossRef] [Google Scholar]
- Regi M, Redaelli G, Francia P, De Lauretis M. 2017. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003–2010. J Geophys Res Atmos 122(12): 6488–6501. https://doi.org/10.1002/2017JD027107. [CrossRef] [Google Scholar]
- Romanova N, Pilipenko V. 2009. ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophys 57(1): 158–170. [CrossRef] [Google Scholar]
- Saito T, Matsushita S. 1968. Solar cycle effects on geomagnetic Pi 2 pulsations. J Geophys Res 73(1): 267–286. https://doi.org/10.1029/JA073i001p00267. [CrossRef] [Google Scholar]
- Sarris TE, Li X. 2016. Calculating ultra-low-frequency wave power of the compressional magnetic field vs. L and time: multi-spacecraft analysis using the Van Allen probes, THEMIS and GOES. Ann Geophys 34(6): 565–571. https://doi.org/10.5194/angeo-34-565-2016. [CrossRef] [Google Scholar]
- Schwartz S, Burgess D, Moses J. 1996. Low-frequency waves in the Earth’s magnetosheath: present status. Ann Geophys 14(11): 1134–1150. https://doi.org/10.1007/s00585-996-1134-z. [Google Scholar]
- Simms L, Engebretson M, Posch J, Hughes W. 2006. Effects of the equatorward auroral boundary location and solar wind parameters on Pc5 activity at auroral zone stations: A multiple regression analysis. J Geophys Res Space Phys 111(A10): A10217. https://doi.org/10.1029/2005JA011587. [CrossRef] [Google Scholar]
- Simms L, Pilipenko V, Engebretson M. 2010. Determining the key drivers of magnetospheric Pc5 wave power. J Geophys Res Space Phys 115(A10): A10241. https://doi.org/10.1029/2009JA015025. [CrossRef] [Google Scholar]
- Smith CW, L’Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The ACE magnetic fields experiment. The Advanced Composition Explorer Mission 613–632. https://doi.org/10.1007/978-94-011-4762-0_21. [CrossRef] [Google Scholar]
- Snekvik K, Tanskanen E, Kilpua E. 2013. An automated identification method for Alfvénic streams and their geoeffectiveness. J Geophys Res Space Phys 118(10): 5986–5998. https://doi.org/10.1002/jgra.50588. [CrossRef] [Google Scholar]
- Stephenson J, Walker A. 2002. HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys Res Lett 29(9): 1297. https://doi.org/10.1029/2001GL014291. [CrossRef] [Google Scholar]
- Stewart B. 1861. On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at the Kew Observatory. Philos Trans R Soc London 151: 423–430. https://doi.org/10.1098/rstl.1861.0023. [NASA ADS] [CrossRef] [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86: 1–22. https://doi.org/10.1023/A:1005082526237. [NASA ADS] [CrossRef] [Google Scholar]
- Takahashi K, Yumoto K, Claudepierre SG, Sanchez ER, Troshichev OA, Janzhura AS. 2012. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity. J Geophys Res Space Phys 117(A4): https://doi.org/10.1029/2011JA017120. [Google Scholar]
- Tanskanen E, Hynönen R, Mursula K. 2017. Seasonal Variation of High-Latitude Geomagnetic Activity in Individual Years. J Geophys Res Space Phys 122(10): https://doi.org/10.1002/2017JA024276. [Google Scholar]
- Tanskanen E, Slavin J, Tanskanen A, Viljanen A, Pulkkinen T, Koskinen H, Pulkkinen A, Eastwood J. 2005. Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys Res Lett 32(16): https://doi.org/10.1029/2005GL023318. [Google Scholar]
- Tanskanen EI. 2009. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J Geophys Res Space Phys (1978–2012) 114(A5): https://doi.org/10.1029/2008JA013682. [Google Scholar]
- Xiong C, Lühr H, Wang H, Johnsen MG. 2014. Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures-Part 1. Ann Geophys 32, 609–622. https://doi.org/10.5194/angeo-32-609-2014. [CrossRef] [Google Scholar]
- Xystouris G, Sigala E, Mavromichalaki H. 2014. A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23. Sol Phys 289(3): 995–1012. https://doi.org/10.1007/s11207-013-0355-z. [CrossRef] [Google Scholar]
- Yagova N, Lanzerotti L, Villante U, Pilipenko V, Lepidi S, Francia P, Papitashvili V, Rodger A. 2002. ULF Pc5-6 magnetic activity in the polar cap as observed along a geomagnetic meridian in Antarctica. J Geophys Res Space Phys 107(A8). https://doi.org/10.1029/2001JA900143. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.