Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2020006 | |
Published online | 16 March 2020 |
- Augustson K, Brun AS, Miesch M, Toomre J. 2015. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo. Astrophys J 809: 149. https://doi.org/10.1088/0004-637X/809/2/149. [CrossRef] [Google Scholar]
- Beer J, Tobias S, Weiss N. 1998. An active sun throughout the maunder minimum. Solar Phys 181: 237–249. https://doi.org/10.1023/A:1005026001784. [Google Scholar]
- Brandenburg A, Subramanian K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Physics Rep 417: 1–209. https://doi.org/10.1016/j.physrep.2005.06.005. [CrossRef] [Google Scholar]
- Brooke J, Moss D, Phillips A. 2002. Deep minima in stellar dynamos. A&A 395: 1013–1022. https://doi.org/10.1051/0004-6361:20021320. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Brown BP, Browning MK, Brun AS, Miesch MS, Toomre J. 2010. Persistent magnetic wreaths in a rapidly rotating sun. Astrophys J 711: 424–438. https://doi.org/10.1088/0004-637X/711/1/424. [NASA ADS] [CrossRef] [Google Scholar]
- Brown BP, Miesch MS, Browning MK, Brun AS, Toomre J. 2011. Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys J 731: 69. https://doi.org/10.1088/0004-637X/731/1/69. [CrossRef] [Google Scholar]
- Bushby PJ. 2006. Zonal flows and grand minima in a solar dynamo model. Mon Not Roy Astron Soc 371: 772–780. https://doi.org/10.1111/j.1365-2966.2006.10706.x. [NASA ADS] [CrossRef] [Google Scholar]
- Cameron RH, Schüssler M. 2017. Understanding solar cycle variability. Astrophys J 843(2): 111. https://doi.org/10.3847/1538-4357/aa767a. [Google Scholar]
- Casas R, Vaquero JM, Vazquez M. 2006. Solar rotation in the 17th century. Solar Phys 234: 379–392. https://doi.org/10.1007/s11207-006-0036-2. [NASA ADS] [CrossRef] [Google Scholar]
- Charbonneau P. 2010. Dynamo models of the solar cycle. Living Rev Sol Phys 7: 3. [NASA ADS] [CrossRef] [Google Scholar]
- Charbonneau P, MacGregor KB. 2001. Magnetic fields in massive stars. I. Dynamo models. Astrophys J 559: 1094–1107. https://doi.org/10.1086/322417. [NASA ADS] [CrossRef] [Google Scholar]
- Choudhuri AR. 1990. On the possibility of an alpha-sq omega-type dynamo in a thin layer inside the sun. Astrophys J 355: 733–744. https://doi.org/10.1086/168806. [CrossRef] [Google Scholar]
- Cliver EW, Bounar KH, Boriakoff V. 1998. Geomagnetic activity and the solar wind during the maunder minimum. In: Synoptic solar physics vol. 140 of Astronomical Society of the Pacific Conference Series, Balasubramaniam KS, Harvey J, Rabin D (Eds.), Astronomical Society of the Pacific, San Francisco, pp. 437–445. [Google Scholar]
- Damon PE, Sonett CP. 1991. Solar and terrestrial components of the atmospheric C-14 variation spectrum. In: The Sun in time, Sonett CP, Giampapa MS, Matthews MS, (Eds.), University of Arizona Press, Tucson, pp. 360–388. [Google Scholar]
- Duarte LDV, Wicht J, Browning MK, Gastine T. 2016. Helicity inversion in spherical convection as a means for equatorward dynamo wave propagation. Mon Not Roy Astron Soc 456: 1708–1722. https://doi.org/10.1093/mnras/stv2726. [CrossRef] [Google Scholar]
- Eddy JA. 1976. The Maunder minimum. Science 192: 1189–1202. https://doi.org/10.1126/science.192.4245.1189. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fan Y, Fang F. 2014. A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux. Astrophys J 789(1): 35. http://stacks.iop.org/0004-637X/789/i=1/a=35. [Google Scholar]
- Ghizaru M, Charbonneau P, Smolarkiewicz PK. 2010. Magnetic cycles in global large-eddy simulations of solar convection. Astrophys J Lett 715: L133–L137. https://doi.org/10.1088/2041-8205/715/2/L133. [CrossRef] [Google Scholar]
- Guerrero G, Smolarkiewicz PK, de Gouveia Dal Pino EM, Kosovichev AG, Mansour NN. 2016. On the role of tachoclines in solar and stellar dynamos. Astrophys J 819: 104. https://doi.org/10.3847/0004-637X/819/2/104. [Google Scholar]
- Guerrero G, Zaire B, Smolarkiewicz PK, de Gouveia Dal Pino EM, Kosovichev AG, Mansour NN. 2019. What sets the magnetic field strength and cycle period in solar-type stars? Astrophys J 880(1): 6. https://doi.org/10.3847/1538-4357/ab224a. [Google Scholar]
- Hotta H, Rempel M, Yokoyama T. 2016. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351: 1427–1430. https://doi.org/10.1126/science.aad1893. [NASA ADS] [CrossRef] [Google Scholar]
- Howe R. 2009. Solar interior rotation and its variation. Living Rev Sol Phys 6: 1. https://doi.org/10.12942/lrsp-2009-1. [CrossRef] [Google Scholar]
- Inceoglu Fadil, Arlt Rainer, Rempel Matthias. 2017. The nature of grand minima and maxima from fully nonlinear flux transport dynamos. Astrophys J 848(2): 93. https://doi.org/10.3847/1538-4357/aa8d68. [NASA ADS] [CrossRef] [Google Scholar]
- Käpylä MJ, Käpylä PJ, Olspert N, Brandenburg A, Warnecke J, Karak BB, Pelt J. 2016. Multiple dynamo modes as a mechanism for long-term solar activity variations. A&A 589: A56. https://doi.org/10.1051/0004-6361/201527002. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Käpylä PJ, Mantere MJ, Brandenburg A. 2012. Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys J Lett 755: L22. https://doi.org/10.1088/2041-8205/755/1/L22. [Google Scholar]
- Käpylä PJ, Mantere MJ, Brandenburg A. 2013. Oscillatory large-scale dynamos from Cartesian convection simulations. Geophys Astrophys Fluid Dyn 107: 244–257. https://doi.org/10.1080/03091929.2012.715158. [NASA ADS] [CrossRef] [Google Scholar]
- Kitchatinov LL, Rüdiger G. 2005. Differential rotation and meridional flow in the solar convection zone and beneath. Astron Nachr 326(6): 379–385. https://doi.org/10.1002/asna.200510368. [Google Scholar]
- Kitchatinov LL, Ruediger G, Kueker M. 1994. {LAMBDA}-quenching as the nonlinearity in stellar-turbulence dynamos. A&A 292: 125–132. [Google Scholar]
- Knobloch E, Tobias SM, Weiss NO. 1998. Modulation and symmetry changes in stellar dynamos. Mon Not Roy Astron Soc 297: 1123–1138. https://doi.org/10.1046/j.1365-8711.1998.01572.x. [NASA ADS] [CrossRef] [Google Scholar]
- Krause F, Rädler K-H. 1980. Mean-field magnetohydrodynamics and dynamo theory, Pergamon Press, Oxford. [Google Scholar]
- Küker M, Arlt R, Rüdiger G. 1999. The Maunder minimum as due to magnetic Lambda-quenching. A&A 343: 977–982. [Google Scholar]
- Malkus WVR, Proctor MRE. 1975. The macrodynamics of α-effect dynamos in rotating fluids. J. Fluid Mech. 67: 417–443. [NASA ADS] [CrossRef] [Google Scholar]
- Masada Y, Yamada K, Kageyama A. 2013. Effects of penetrative convection on solar dynamo. Astrophys J 778: 11. https://doi.org/10.1088/0004-637X/778/1/11. [NASA ADS] [CrossRef] [Google Scholar]
- Moffatt HK. 1978. Magnetic field generation in electrically conducting fluids, Cambridge University Press, Cambridge. [Google Scholar]
- Moss D, Brandenburg A, Tuominen I. 1991. Properties of mean field dynamos with non-axisymmetric alpha-effect. A&A 247: 576–579. [Google Scholar]
- Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J. 2013. Magnetic wreaths and cycles in convective dynamos. Astrophys J 762: 73. https://doi.org/10.1088/0004-637X/762/2/73. [CrossRef] [Google Scholar]
- Olemskoy SV, Kitchatinov LL. 2013. Grand minima and north-south asymmetry of solar activity. Astrophys J 777: 71. https://doi.org/10.1088/0004-637X/777/1/71. [NASA ADS] [CrossRef] [Google Scholar]
- Ossendrijver M. 2003. The solar dynamo. A&A Rev. 11: 287–367. https://doi.org/10.1007/s00159-003-0019-3. [NASA ADS] [CrossRef] [Google Scholar]
- Passos D, Charbonneau P. 2014. Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection. A&A 568: A113. https://doi.org/10.1051/0004-6361/201423700. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Passos D, Nandy D, Hazra S, Lopes I. 2014. A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. A&A 563: A18. https://doi.org/10.1051/0004-6361/201322635. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Peristykh AN, Damon PE. 2003. Persistence of the Gleissberg 88-year solar cycle over the last 12,000 years: Evidence from cosmogenic isotopes. J Geophys Res (Space Phys) 108: 1003. https://doi.org/10.1029/2002JA009390. [NASA ADS] [CrossRef] [Google Scholar]
- Racine É, Charbonneau P, Ghizaru M, Bouchat A, Smolarkiewicz PK. 2011. On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys J 735: 46. https://doi.org/10.1088/0004-637X/735/1/46. [Google Scholar]
- Rädler K-H. 1980. Mean-field approach to spherical dynamo models. Astron Nachr 301: 101–129. [NASA ADS] [CrossRef] [Google Scholar]
- Rempel M. 2006. Flux-transport dynamos with lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys J 647(1): 662–675. https://doi.org/10.1086/505170. [Google Scholar]
- Ribes JC, Nesme-Ribes E. 1993. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. A&A 276: 549. [Google Scholar]
- Ruediger G, Brandenburg A. 1995. A solar dynamo in the overshoot layer: cycle period and butterfly diagram. A&A 296: 557. [Google Scholar]
- Schrinner M, Rädler K-H, Schmitt D, Rheinhardt M, Christensen UR. 2007. Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys Astrophys Fluid Dyn 101(2): 81–116. https://doi.org/10.1080/03091920701345707. [CrossRef] [Google Scholar]
- Simard C, Charbonneau P, Bouchat A. 2013. Magnetohydrodynamic simulation-driven kinematic mean field model of the solar cycle. Astrophys J 768: 16. https://doi.org/10.1088/0004-637X/768/1/16. [NASA ADS] [CrossRef] [Google Scholar]
- Simard C, Charbonneau P, Dubé C. 2016. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection. Adv Space Res 58: 1522–1537. https://doi.org/10.1016/j.asr.2016.03.041. [NASA ADS] [CrossRef] [Google Scholar]
- Simitev RD, Kosovichev AG, Busse FH. 2015. Dynamo effects near the transition from solar to anti-solar differential rotation. Astrophys J 810: 80. https://doi.org/10.1088/0004-637X/810/1/80. [NASA ADS] [CrossRef] [Google Scholar]
- Sokoloff D, Nesme-Ribes E. 1994. The Maunder minimum: A mixed-parity dynamo mode? A&A 288: 293–298. [Google Scholar]
- Strugarek A, Beaudoin P, Charbonneau P, Brun AS. 2018. On the sensitivity of magnetic cycles in global simulations of solar-like stars. Astrophys J 863(1): 35. https://doi.org/10.3847/1538-4357/aacf9e. [Google Scholar]
- Tobias SM. 1996. Grand minimia in nonlinear dynamos. A&A 307: L21. [Google Scholar]
- Tobias SM. 1997. The solar cycle: parity interactions and amplitude modulation. A&A 322: 1007–1017. [Google Scholar]
- Usoskin IG. 2017. A history of solar activity over millennia. Living Rev Sol Phys 14(1): 3. https://doi.org/10.1007/s41116-017-0006-9. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2004. Long-term solar activity: direct and indirect study. Solar Phys 224: 37–47. https://doi.org/10.1007/s11207-005-3997-7. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Solanki SK, Kovaltsov GA. 2007. Grand minima and maxima of solar activity: new observational constraints. A&A 471: 301–309. https://doi.org/10.1051/0004-6361:20077704. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin IG, Sokoloff D, Moss D. 2009. Grand minima of solar activity and the mean-field dynamo. Solar Phys 254: 345–355. https://doi.org/10.1007/s11207-008-9293-6. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Arlt R, Asvestari E, Hawkins E, Käpylä M, et al. 2015. The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. A&A 581: A95. https://doi.org/10.1051/0004-6361/201526652. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Usoskin IG, Gallet Y, Lopes F, Kovaltsov GA, Hulot G. 2016. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. A&A 587: A150. https://doi.org/10.1051/0004-6361/201527295. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vasiliev SS, Dergachev VA. 2002. The 2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Ann Geophys 20: 115–120. https://doi.org/10.5194/angeo-20-115-2002. [NASA ADS] [CrossRef] [Google Scholar]
- Warnecke J, Rheinhardt M, Tuomisto S, Käpylä PJ, Käpylä MJ, Brandenburg A. 2018. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. A&A 609: A51. https://doi.org/10.1051/0004-6361/201628136. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.