Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 59 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020063 | |
Published online | 30 November 2020 |
- Akiyama S, Gopalswamy N, Yashiro S, Makela P. 2013. A study of coronal holes observed by SOHO/EIT and the Nobeyama Radioheliograph. Publ Astron Soc Japan 65(S15): https://doi.org/10.1093/pasj/65.sp1.S15. [Google Scholar]
- Anderson B, Erlandson R, Zanetti L. 1992. A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere 1. Equatorial occurrence distributions. J Geophys Res 97(A3): 3075–3088. https://doi.org/10.1029/91JA02706. [CrossRef] [Google Scholar]
- Anderson B, Erlandson R, Zanetti L. 1992b. A statistical study of Pc 1–2 Magnetic Pulsations in the Equatorial Magnetosphere 2. Waves properties. J Geophys Res 97(A3): 3089–3101. https://doi.org/10.1029/91JA02697. [CrossRef] [Google Scholar]
- Balmaceda LA, Vourlidas A, Stenborg G, Lago AD. 2018. How reliable are the properties of coronal mass ejections measured from a single viewpoint? Astrophys J 863(1): 57, 1–16. https://doi.org/10.3847/1538-4357/aacff8. [Google Scholar]
- Benioff H. 1960. Observations of geomagnetic fluctuations in the period range 0.3 to 120 seconds. J Geophys Res 65(5): 1413–1422. https://doi.org/10.1029/JZ065i005p01413. [CrossRef] [Google Scholar]
- Bortnik J, Cutler JW, Dunson C, Bleier TE, McPherron RL. 2008. Characteristics of low-latitude Pc1 pulsations during geomagnetic storms. J Geophys Res 113(A04201): 1–9. https://doi.org/10.1029/2007JA012867. [CrossRef] [Google Scholar]
- Burton RK, McPherron RL, Russell CT. 1975. An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80(31): 4204–4214. https://doi.org/10.1029/JA080i031p04204. [Google Scholar]
- Campbell WH, Stiltner EC. 1965. Some characteristics of geomagnetic pulsations at frequencies near 1 c/s. Radio Sci 69D: 1117–1132. [Google Scholar]
- Cane HV, Richardson IG, Cyr OCS. 2000. Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys Res Lett 27(21): 3591–3594. https://doi.org/10.1029/2000GL000111. [NASA ADS] [CrossRef] [Google Scholar]
- Carrington R. 1859. Description of a singular appearance seen in the Sun on September 1, 1859. Mon Not Roy Astron Soc 20(1): 13–15. https://doi.org/10.1093/mnras/20.1.13. [Google Scholar]
- Cramer WD, Turner NE, Fok MC, Buzulukova NY. 2013. Effects of different geomagnetic storm drivers on the ring current: CRCM results. J Geophys Res 118: 1062–1073. https://doi.org/10.1002/jgra.50138. [CrossRef] [Google Scholar]
- Cranmer SR. 2002. Coronal holes and the high-speed solar wind. Space Sci Rev 101(3): 229–294. https://doi.org/10.1023/A:1020840004535. [NASA ADS] [CrossRef] [Google Scholar]
- Cranmer SR. 2009. Coronal Holes. Liv Rev Sol Phys 6: https://doi.org/10.12942/lrsp-2009-3. [Google Scholar]
- Cranmer SR, Gibson SE, Riley P. 2017. Origins of the Ambient Solar Wind: Implications for Space Weather. Space Sci Rev 212(3–4): 1345–1384. https://doi.org/10.1007/s11214-017-0416-y. [NASA ADS] [CrossRef] [Google Scholar]
- Echer E, Tsurutani BT, Gonzalez WD. 2013. Interplanetary origins of moderate (−100 nT < Dst −50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J Geophys Res 118: 385–392. https://doi.org/10.1029/2012JA018086. [CrossRef] [Google Scholar]
- Engebretson MJ, Lessard MR, Bortnik J, Green JC, Horne RB, et al. 2008. Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: Superposed epoch analysis and case studies. J Geophys Res 113(A01211): https://doi.org/10.1029/2007JA012362. [Google Scholar]
- Erlandson R, Anderson B. 1996. Pc 1 waves in the ionosphere: A statistical study. J Geophys Res 101(A4): 7843–7857. https://doi.org/10.1029/96JA00082. [CrossRef] [Google Scholar]
- Erlandson R, Ukhorskiy A. 2001. Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering. J Geophys Res 106(A3): 3883–3895. https://doi.org/10.1029/2000JA000083. [CrossRef] [Google Scholar]
- Eyles CJ, Harrison RA, Davis CJ, Waltham NR, Shaughnessy BM, et al. 2009. The heliospheric imagers onboard the STEREO mission. Sol Phys 254(2): 387–445. https://doi.org/10.1007/s11207-008-9299-0. [CrossRef] [Google Scholar]
- Farrugia CJ, Freeman MP, Burlaga LF, Lepping RP, Takahashi K. 1993. The Earth’s magnetosphere under continued forcing: Substorm activity during the passage of an interplanetary magnetic cloud. J Geophys Res 98(A5): 7657–7671. https://doi.org/10.1029/92ja02351. [CrossRef] [Google Scholar]
- Fraser-Smith AC. 1970. Some statistics on Pcl geomagnetic micropulsation occurrence at middle latitudes: Inverse relation with sunspot cycle and semiannual period. J Geophys Res 75(25): 4735–4745. https://doi.org/10.1029/JA075i025p04735. [CrossRef] [Google Scholar]
- Gonzalez WD, Tsurutani BT, de Gonzalez ALC. 1999. Interplanetary origin of geomagnetic storms. Space Sci Rev 88: 529–562. https://doi.org/10.1023/A:1005160129098. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N. 2002. Space weather study using combined coronagraphic and in situ observations. COSPAR Colloquia Ser 12: 39–47. https://doi.org/10.1016/S0964-2749(02)80204-9. [CrossRef] [Google Scholar]
- Gopalswamy N. 2009. Halo coronal mass ejections and geomagnetic storms. Earth Planets Space 61: 595–597. https://doi.org/10.1186/BF03352930. [CrossRef] [Google Scholar]
- Gopalswamy N, Akiyama S, Yashiro S, Xie H, Mäkelä P, Michalek G. 2014a. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys Res Lett 41(8): 2673–2680. https://doi.org/10.1002/2014GL059858. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Lara A, Kaiser ML, Bougeret JL. 2001a. Near-Sun and nears-Earth manifestations of solar eruptions. J Geophys Res A11: 25261–25277. https://doi.org/10.1029/2000JA004025. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Xie H, Akiyama S, Mäkelä P, Yashiro S, Michalek G. 2015. The peculiar behavior of halo coronal mass ejections in solar cycle 24. Astrophys J Lett 804(1) (L23): 1–6. https://doi.org/10.1088/2041-8205/804/1/L23. [CrossRef] [Google Scholar]
- Gopalswamy N, Xie H, Akiyama S, Mäkelä PA, Yashiro S. 2014b. Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66(104): 1–15. https://doi.org/10.1186/1880-5981-66-104. [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Akiyama S. 2016. Unusual polar conditions in solar cycle 24 and their implications for cycle 25. Astrophys J 823(1)(L15): 1–6. https://doi.org/10.3847/2041-8205/823/1/L15. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Kaiser ML, Howard RA, Bougeret J-L. 2001b. Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys J 548: L91–L94. https://doi.org/10.1086/318939. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Stenborg G, Vourlidas A, Freeland S, Howard R. 2009. The SOHO/LASCO CME Catalog. Earth Moon, Planets 104: 295–313. https://doi.org/10.1007/s11038-008-9282-7. [Google Scholar]
- Gopalswamy N, Yashiro S, Michalek G, Xie H, Lepping RP, Howard RA. 2005. Solar source of the largest geomagnetic storm of cycle 23. Geophys Res Lett 32(L12S09): 1–5. https://doi.org/10.1029/2004GL021639. [CrossRef] [Google Scholar]
- Guarnieri FL, Tsurutani BT, Gonzalez WD, Gonzalez ALC, Grande M, Soraas F, Echer E. 2006. ICME and CIR storms with particular emphases on HILDCAA events ILWS Workshop, February 19–20, GOA. [Google Scholar]
- Guglielmi A, Kangas J. 2007. Pc1 waves in the system of solar-terrestrial relations: New reflections. J Atmos Sol Terr Phys 69(14): 1635–1643. https://doi.org/10.1016/j.jastp.2007.01.015. [CrossRef] [Google Scholar]
- Guglielmi A, Potapov A, Matveyeva E, Polyushkina T, Kangas J. 2006. Temporal and spatial characteristics of Pc1 geomagnetic pulsations. Adv Space Res 38(8): 1572–1575. https://doi.org/10.1016/j.asr.2005.05.027. [CrossRef] [Google Scholar]
- Heacock RR, Kivinen M. 1972. Relation of Pc1 micropulsations to the ring current and geomagnetic storms. J Geophys Res 77: 6746–6760. [CrossRef] [Google Scholar]
- Jacobs JA, Lokken JE, Wright CS. 1963. Notation and classification of geomagnetic micropulsations. J Geophys Res 68(14): 4373–4374. https://doi.org/10.1029/JZ068i014p04373. [CrossRef] [Google Scholar]
- Kanekal SG. 2006. A review of recent observations of relativistic electron energization in the Earth’s outer Van Allen radiation belt. ILWS Workshop-The Solar Influence on the Heliosphere and Earth’s Environment, GOA, February 19–24, pp. 1–6. [Google Scholar]
- Kawamura M, Kuwashima M, Toya T, Fukunishi H. 1983. Comparative study of magnetic Pc1 pulsations observed at low and high latitudes: Long-term variation of occurrence frequency of the pulsations. National Institute Polar Research Memoirs 26: 1–12. [Google Scholar]
- Kerttula R, Mursula K, Pikkarainen T, Kangas J. 2001. Effect of magnetic storm intensity on Pc1 activity at high and mid-latitudes. J Atmos Sol Terr Phys 63(5): 503–511. https://doi.org/10.1016/S1364-6826(00)00172-3. [CrossRef] [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective properties of solar transients and stream interaction regions. Space Sci Rev 212(3–4): 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- Kim R, Cho K, Moon Y, Kim Y, Yi Y, Dryer M, Bong S, Park Y. 2005. Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003. J Geophys Res 110(A11104): 1–8. https://doi.org/10.1029/2005JA011218. [Google Scholar]
- Kitamura N, Kitahara M, Shoji M, Miyoshi Y, Hasegawa H, et al. 2018. Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science 361(6406): 1000–1003. https://doi.org/10.1126/science.aap8730. [CrossRef] [Google Scholar]
- Kleimenova NG, Kozyreva OV, Breus TK, Rapoport SI. 2007. Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J Atmos Sol Terr Phys 69(14): 1759–1764. https://doi.org/10.1016/j.jastp.2006.10.018. [CrossRef] [Google Scholar]
- Klein K, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212(3–4): 1107–1136. https://doi.org/10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
- Knipp DJ, Fraser BJ, Shea MA, Smart DF. 2018. On the little-known consequences of the 4 August 1972 ultra-fast coronal mass ejecta: facts, commentary and call to action. Space Weather 16(11): 1635–1643. https://doi.org/10.1029/2018SW002024. [NASA ADS] [CrossRef] [Google Scholar]
- Kulak A, Kubisz J, Klucjasz S, Michalec A, Mlynarczyk J, Nieckarz Z, Ostrowski M, Zieba S. 2014. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis. Radio Sci 49: 361–370. https://doi.org/10.1002/2014RS005400. [CrossRef] [Google Scholar]
- Lugaz N, Temmer M, Wang Y, Farrugia CJ. 2017. The interaction of successive coronal mass ejections: A review. Solar Phys 292(64): 1–37. https://doi.org/10.1007/s11207-017-1091-6. [Google Scholar]
- Luhmann JG, Petrie GJD, Riley P. 2013. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24. J Adv Res 4(3): 221–228. https://doi.org/10.1016/j.jare.2012.08.008. [CrossRef] [Google Scholar]
- Manoharan PK, Agalya G. 2011. High energy solar particle events and their associated coronal mass ejections. Adv Geosci 27: 165–179. https://doi.org/10.1142/9789814355414_0015. [Google Scholar]
- Manoharan PK, Gopalswamy N, Yashiro S, Lara A, Michalek G, Howard RA. 2004. Influence of coronal massejection interaction on propagation of interplanetary shocks. J Geophys Res 109(A06109): 1–9. https://doi.org/10.1029/2003JA010300. [NASA ADS] [CrossRef] [Google Scholar]
- Märcz F, Verö J. 2002. Pearl-type micropulsations at mid-latitude; their relation to whistlers, solar and geomagnetic activity as well as ionospheric absorption. J Atmos Sol Terr Phys 64(3): 377–387. https://doi.org/10.1016/S1364-6826(01)00102-X. [CrossRef] [Google Scholar]
- Mergu RR, Dixit SK. 2011. Multi-Resolution Speech Spectrogram. Int J Comput Appl 15(4): 28–32. https://doi.org/10.5120/1937-2587. [Google Scholar]
- Michalek G, Gopalswamy N, Yashiro S. 2019. On the coronal mass ejection detection rate during Solar Cycles 23 and 24. Astrophys J 880:51(1): 1–16. https://doi.org/10.3847/1538-4357/ab26a7. [Google Scholar]
- Moon Y-J, Cho K-S, Dryer M, Kim Y-H, Chan Bong S, Chae J, Park YD. 2005. New geoeffective parameters of very fast halo coronal mass ejections. Astrophys J 624(1): 414–419. https://doi.org/10.1086/428880. [NASA ADS] [CrossRef] [Google Scholar]
- Mursula K, Anderson B, Erlandson R, Pikkarainen T. 1996. Solar cycle change of Pcl waves observed by an equatorial satellite and on the ground. Adv Space Res 17(10): 51–55. https://doi.org/10.1016/0273-1177(95)00694-A. [CrossRef] [Google Scholar]
- Mursula K, Kangas J, Pikkarainen T, Kivinen M. 1991. Pc1 micropulsations at a high-latitude station: A study over nearly four solar cycles. J Geophys Res 96(A10): 17651–17661. https://doi.org/10.1029/91JA01374. [CrossRef] [Google Scholar]
- Navia CE, de Oliveira MN, Augusto CRA. 2018. The highest geomagnetic storms of the solar cycle observed at ground level. In: Extreme Weather. Sallis PJ, (Ed.) IntechOpen, pp. 31–47. [Google Scholar]
- Nieckarz Z. 2016. Imprints of Natural Phenomena and Human Activity Observed During 10 Years of ELF Magnetic Measurements at the Hylaty Geophysical Station in Poland. Acta Geophys 64(6): 2591–2608. https://doi.org/10.1515/acgeo-2016-0101. [CrossRef] [Google Scholar]
- Nomura R, Shiokawa K, Pilipenko V, Shevtsov B. 2011. Frequency-dependent polarization characteristics of Pc1 geomagnetic pulsations observed by multipoint ground stations at low latitudes. J Geophys Res 116(A01204): https://doi.org/10.1029/2010JA015684. [Google Scholar]
- Norton H, Newmark JS, Feldman U. 1999. SOHO EIT observations of coronal holes. In: Proceedings of the Conference held 22–25 June 1999 in CAP 15, 1–13 Quai de Grenelle, 75015 Paris, France, pp. 446–509. [Google Scholar]
- Park J, Luhr H, Rauberg J. 2013. Global characteristics of Pc1 magnetic pulsations during solar cycle 23 deduced from CHAMP data. Ann Geophys 31: 1507–1520. https://doi.org/10.5194/angeo-31-1507-2013. [CrossRef] [Google Scholar]
- Paulson KW, Smith CW, Lessard MR, Torbert RB, Kletzing CA, Wygant JR. 2017. In situ statistical observations of Pc1 pearl pulsations and unstructured EMIC waves by the Van Allen Probes. J Geophys Res 122: 105–119. https://doi.org/10.1002/2016JA023160. [CrossRef] [Google Scholar]
- Pesnell WD. 2016. Predictions of solar cycle 24: How arewe doing? Space Weather 14(1): 10–21. https://doi.org/10.1002/2015SW001304. [NASA ADS] [CrossRef] [Google Scholar]
- Petrie GJD. 2013. Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys J 768(162): 1–18. https://doi.org/10.1088/0004-637X/768/2/162. [NASA ADS] [CrossRef] [Google Scholar]
- Petrie GJD. 2015a. On the enhanced coronal mass ejection detection rate since the Solar Cycle 23 Polar field reversal. Astrophys J 812(74): 1–14. https://doi.org/10.1088/0004-637X/812/1/74. [CrossRef] [Google Scholar]
- Petrie GJD. 2015b. Solar magnetism in the polar regions. Liv Rev Solar Phys 12(5): 84–89. https://doi.org/10.1007/lrsp-2015-5. [Google Scholar]
- Plotnikov I, Rouillard AP, Davies JA, Bothmer V, Eastwood JP, et al. 2016. Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging. Solar Phys 291: 1853–1875. https://doi.org/10.1007/s11207-016-0935-9. [CrossRef] [Google Scholar]
- Posch JL, Engebretson MJ, Murphy MT, Denton MH, Lessard MR, Horne RB. 2010. Probing the relationship between electromagnetic ion cyclotron waves and plasmaspheric plumes near geosynchronous orbit. J Geophys Res 115(A11205): 1–18. https://doi.org/10.1029/2010JA015446. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2012a. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J Space Weather Space Clim 2(A02): 1–10. https://doi.org/10.1051/swsc/2012003. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2012b. Solar wind drivers of geomagnetic storms duringmore than four solar cycles. J Space Weather Space Clim 2(A01): 1–9. https://doi.org/10.1051/swsc/2012001. [Google Scholar]
- Richardson IG, Cliver EW, Cane HV. 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys Res Lett 28(13): 2569–2572. https://doi.org/10.1029/2001GL013052. [NASA ADS] [CrossRef] [Google Scholar]
- Richardson IG, Webb DF, Zhang J, Berdichevsky D, Biesecker DA, et al. 2006. Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions. J Geophys Res 111(A7): 1–17. https://doi.org/10.1029/2005ja011476. [CrossRef] [Google Scholar]
- Schrijver CJ. 2015. Socio-Economic Hazards and Impacts of Space Weather: The Important Range Between Mild and Extreme. Space. Weather 13(9): 524–528. https://doi.org/10.1002/2015sw001252. [CrossRef] [Google Scholar]
- Scolini K, Chane E, Temmer M, Kilpua EKJ, Dissauer K, Veronig AM, Dumbovic EPJPM, Guo J, Rodriguez L, Poedts S. 2020. CME-CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. Astrophys J Suppl Ser 247(21): 1–27. https://doi.org/10.3847/1538-4365/ab6216. [CrossRef] [Google Scholar]
- Shanmugaraju A, Ibrahim MS, Moon Y-J, Rahman AM, Umapathy S. 2015. Empirical Relationship Between CME Parameters and Geo-effectiveness of Halo CMEs in the Rising Phase of Solar Cycle 24 (2011–2013). Solar Physics 290: 1417–1427. https://doi.org/10.1007/s11207-015-0671-6. [NASA ADS] [CrossRef] [Google Scholar]
- Shen C, Wang Y, Pan Z, Zhang M, Ye P, Wang S. 2013. Full halo coronal mass ejections: Do we need to correct the projection effect in terms of velocity? J Geophys Res 118(11): 6858–6865. https://doi.org/10.1002/2013ja018872. [NASA ADS] [CrossRef] [Google Scholar]
- Stewart B. 1861. On the great magnetic disturbance of August 28 to September 7, 1859, as recorded by photography at the kew observatory. Proc Roy Soc London 11: 407–410. [Google Scholar]
- Subrahmanyam S, Narayan PVS, Srinivasan TM. 1985. Effect of magnetic micropulsations.on the biological systems – a bioenvironmental study. Int J Biometeor 29(3): 293–305. [CrossRef] [Google Scholar]
- Temmer M, Preiss S, Veronig AM. 2009. CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Phys 256(1–2): 183–199. https://doi.org/10.1007/s11207-009-9336-7. [NASA ADS] [CrossRef] [Google Scholar]
- Verbanac G, Vršnak B, Veronig A, Temmer M. 2011. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron Astrophys 526(A20): 1–13. https://doi.org/10.1051/0004-6361/201014617. [Google Scholar]
- Vršnak B, Ruzdjak D, Sudar D, Gopalswamy N. 2004a. Kinematics of coronal mass ejections between 2 and 30 solar radii – What can be learned about forces governing the eruption? Astron Astrophys 423: 717–728. https://doi.org/10.1051/0004-6361:20047169. [Google Scholar]
- Vršnak B, D, AL. 2004b. Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys 225: 355–378. https://doi.org/10.1007/s11207-004-4995-x. [Google Scholar]
- Wang Y-M, Colaninno R. 2014. Is solar cycle 24 producing more coronal mass ejections than cycle 23? Astrophys J Lett 784(L27): 1–8. https://doi.org/10.1088/2041-8205/784/2/L27. [Google Scholar]
- Watari S. 2017. Geomagnetic storms of cycle 24 and their solar sources. Watari Earth Planets Space 69(70): 1–8. https://doi.org/10.1186/s40623-017-0653-z. [CrossRef] [Google Scholar]
- Webb DF, Howard RA, Cyr OCS, Vourlidas A. 2017. Is there a CME rate floor? CME and magnetic flux values for the last four solar cycle minima. Astrophys J 851(142): 1–10. https://doi.org/10.3847/1538-4357/aa9b81. [CrossRef] [Google Scholar]
- Wentworth RC. 1964. Enhancement of hydromagnetic emissions after geomagnetic storms. J Geophys Res 69: 2291–2298. [CrossRef] [Google Scholar]
- Yashiro S, Gopalswamy N, Michałek G, Cyr O, Plunkett S, Rich NB, Howard RA. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109(A07105): 1–11. https://doi.org/10.1029/2003JA010282. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Dere KP, Howard RA, Bothmer V. 2003. Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000. Astrophys J 582(1): 520–533. https://doi.org/10.1086/344611. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Dere KP, Howard RA, Kundu MR, White SM. 2001. On the temporal relationship between coronal mass ejections and flares. Astrophys J 559(1): 452–462. https://doi.org/10.1086/322405. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang J, Richardson IG, Webb DF, Gopalswamy N, Huttunen E, et al. 2007. Solar and interplanetary sources of major geomagnetic storms (Dst = −100 nT) during 1996–2005. J Geophys Res 112(A10102): https://doi.org/10.1029/2007JA012321. [Google Scholar]
- Zieba S, Nieckarz Z. 2014. Sunspot time series: passive and active intervals. Solar Phys 289(7): 2705–2726. https://doi.org/10.1007/s11207-014-0498-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.