Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 60 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2020060 | |
Published online | 07 December 2020 |
- Biesecker D., The Solar Cycle 24 Prediction Panel. 2007. Consensus statement of the Solar Cycle 24 prediction panel, released March 2007. URL https://www.swpc.noaa.gov/SolarCycle/SC24/. [Google Scholar]
- Bisoi SK, Janardhan P, Ananthakrishnan S. 2020. Another mini solar maximum in the offing: A prediction for the amplitude of Solar Cycle 25. J Geophys Res: Space Phys 125: e2019JA027508. [CrossRef] [Google Scholar]
- Bracewell RN. 1953. The sunspot number series. Nature 171(4354): 649–650. https://doi.org/10.1038/171649a0. [NASA ADS] [CrossRef] [Google Scholar]
- Brown G. 1986. Working group “A” report: Long-term solar activity predictions. In: Solar-terrestrial predictions, Simon PA, Heckman G, Shea MA (Eds.), pp. 1–7. [Google Scholar]
- Choudhuri A, Chatterjee P, Jiang J. 2007. Predicting Solar Cycle 24 with a solar dynamo model. Phys Rev Lett 98(131): 103. https://doi.org/10.1103/PhysRevLett.98.131103. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Clette F, Lefèvre L. 2016. The new sunspot number: Assembling all corrections. Sol Phys 291: 2629–2651. https://doi.org/10.1007/s11207-016-1014-y. [NASA ADS] [CrossRef] [Google Scholar]
- Clette F, Svalgaard L, Vaquero JM, Cliver EW. 2014. Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci Rev 186: 35–103. https://doi.org/10.1007/s11214-014-0074-2. [CrossRef] [Google Scholar]
- Cook AF. 1949. On the mathematical characteristics of sunspot-variations. J Geophys Res 54(4): 347–354. https://doi.org/10.1029/JZ054i004p00347. [CrossRef] [Google Scholar]
- Covas E, Peixinho N, Fernandes J. 2019. Neural network forecast of the sunspot butterfly diagram. Sol Phys 294(3): 24. https://doi.org/10.1007/s11207-019-1412-z. [CrossRef] [Google Scholar]
- Covington AE. 1969. Solar radio emission at 10.7 cm, 1947–1968. J R Astron Soc Can 63: 125–132. [Google Scholar]
- Dancho M, Keydana S. 2018. TensorFlow for R: Predicting sunspot frequency with Keras. https://blogs.rstudio.com/tensorflow/posts/2018-06-25-sunspots-lstm/. [Google Scholar]
- Feynman J. 1982. Geomagnetic and solar wind cycles, 1900–1975. J Geophys Res 87: 6153–6162. [CrossRef] [Google Scholar]
- Hathaway DH, Wilson RM. 2006. Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys Res Lett 33(L18): 101. https://doi.org/10.1029/2006GL027053. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH, Wilson RM, Reichman EJ. 1994. The shape of the sunspot cycle. Sol Phys 151: 177–190. https://doi.org/10.1007/BF00654090. [Google Scholar]
- Hathaway DH, Wilson RM, Reichman EJ. 1999. A synthesis of solar cycle prediction techniques. J Geophys Res 104: 375–388. https://doi.org/10.1029/1999JA900313. [Google Scholar]
- Hathaway DH, Wilson RM, Reichmann EJ. 2001. Status of cycle 23 forecasts. Washington DC Am Geophys Union Geophys Monogr Ser 125: 195–200. https://doi.org/10.1029/GM125p0195. [Google Scholar]
- Helal HR, Galal A. 2013. An early prediction of the maximum amplitude of the solar cycle 25. J Adv Res 4(3): 275–278. https://doi.org/10.1016/j.jare.2012.10.002. [CrossRef] [Google Scholar]
- Hess Webber SA, Karna N, Pesnell WD, Kirk MS. 2014. Areas of polar coronal holes from 1996 through 2010. Sol Phys 289: 4047–4067. https://doi.org/10.1007/s11207-014-0564-0. [NASA ADS] [CrossRef] [Google Scholar]
- Joselyn J, Anderson J, Coffey H, Harvey K, Hathaway D, et al. 1997. Panel achieves consensus prediction of Solar Cycle 23. EOS Trans AGU 78: 205–212. https://doi.org/10.1029/97EO00136. [NASA ADS] [CrossRef] [Google Scholar]
- Karna N, Hess Webber SA, Pesnell WD. 2014. Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in Solar Cycle 24. Sol Phys 289: 3381–3390. https://doi.org/10.1007/s11207-014-0541-7. [NASA ADS] [CrossRef] [Google Scholar]
- Karna N, Zhang J, Pesnell WD. 2017. The formation and maintenance of the dominant southern polar crown cavity of cycle 24. Astrophys J 835(2): 135. https://doi.org/10.3847/1538-4357/835/2/135. [CrossRef] [Google Scholar]
- Kirk MS, Pesnell WD, Young CA, Hess Webber SA. 2009. Automated detection of EUV polar coronal holes during Solar Cycle 23. Sol Phys 257: 99–112. https://doi.org/10.1007/s11207-009-9369-y. [NASA ADS] [CrossRef] [Google Scholar]
- Kirk MS, Pesnell WD, Arge C. 2019. A comprehensive assessment of EUV polar coronal holes: 1996–2018. In: American Astronomical Society Meeting Abstracts #234, Vol. 234 of American Astronomical Society Meeting Abstracts, 125.01 p. [Google Scholar]
- Layden AC, Fox PA, Howard JM, Sarajedini A, Schatten KH. 1991. Dynamo-based scheme for forecasting the magnitude of solar activity cycles. Sol Phys 132: 1–40. https://doi.org/10.1007/BF00159127. [CrossRef] [Google Scholar]
- Li KJ, Yun HS, Gu XM. 2001. On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. A&A 368: 285–291. https://doi.org/10.1051/0004-6361:20000547. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- McIntosh P, Brown G, Buhmann R, Clark T, Fougere P, Hunter H, Lincoln J, Sargent I, Timothy J, Lin Y. 1979. Long-term solar activity predictions. In: NOAA solar-terrestrial predictions proceedings, Donnelly R (Ed.), Vol. 2, pp. 246–257. [Google Scholar]
- Muñoz-Jaramillo A, Balmaceda LA, DeLuca EE. 2013. Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys Rev Lett 111(41): 106. https://doi.org/10.1103/PhysRevLett.111.041106. [Google Scholar]
- Ohl AI, Ohl GI. 1979. A new method of very long-term prediction of solar activity. In: Solar-Terrestrial Predictions Proceedings, Donnelly R (Ed.), Vol. 2, NOAA/Space Environment Laboratory, pp. 258–263. [Google Scholar]
- Pesnell WD. 2008. Predictions of Solar Cycle 24. Sol Phys 252: 209–220. https://doi.org/10.1007/s11207-008-9252-2. [CrossRef] [Google Scholar]
- Pesnell WD. 2012. Solar cycle predictions (invited review). Sol Phys 281: 507–532. https://doi.org/10.1007/s11207-012-9997-5. [Google Scholar]
- Pesnell WD. 2014. Predicting Solar Cycle 24 using a geomagnetic precursor pair. Sol Phys 289: 2317–2331. https://doi.org/10.1007/s11207-013-0470-x. [NASA ADS] [CrossRef] [Google Scholar]
- Pesnell WD. 2016. Predictions of Solar Cycle 24: How are we doing? Space Weather 14: 10–21. https://doi.org/10.1002/2015SW001304. [NASA ADS] [CrossRef] [Google Scholar]
- Pesnell WD. 2018. Effects of version 2 of the International Sunspot Number on naïve predictions of Solar Cycle 25. Space Weather 16: 1997–2003. https://doi.org/10.1029/2018SW002080. [CrossRef] [Google Scholar]
- Pesnell WD, Schatten KH. 2018. An early prediction of the amplitude of Solar Cycle 25. Sol Phys 293: 112. https://doi.org/10.1007/s11207-018-1330-5. [CrossRef] [Google Scholar]
- Petrovay K. 2020. Solar cycle prediction. Living Rev Sol Phys 17(1): 2. https://doi.org/10.1007/s41116-020-0022-z. [CrossRef] [Google Scholar]
- Priyal M, Banerjee D, Karak BB, Muñoz-Jaramillo A, Ravindra B, Choudhuri AR, Singh J. 2014. Polar network index as a magnetic proxy for the solar cycle studies. Astrophys J Lett 793(1): L4. https://doi.org/10.1088/2041-8205/793/1/L4. [CrossRef] [Google Scholar]
- Russell CT, Mewaldt RA, Luhmann JG, Mason GM, von Rosenvinge TT, et al. 2013. The very unusual interplanetary coronal mass ejection of 2012 July 23: A blast wave mediated by solar energetic particles. Astrophys J 770: 38. https://doi.org/10.1088/0004-637X/770/1/38. [NASA ADS] [CrossRef] [Google Scholar]
- Schatten KH. 2005. Fair space weather for solar cycle 24. Geophys Res Lett 32(L21): 106. https://doi.org/10.1029/2005GL024363. [CrossRef] [Google Scholar]
- Schatten KH, Pesnell WD. 1993. An early solar dynamo prediction: Cycle 23 ~ cycle 22. Geophys Res Lett 20: 2275–2278. https://doi.org/10.1029/93GL02431. [Google Scholar]
- Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM. 1978. Using Dynamo Theory to predict the sunspot number during Solar Cycle 21. Geophys Res Lett 5: 411–414. https://doi.org/10.1029/GL005i005p00411. [Google Scholar]
- Solomon SC, Woods TN, Didkovsky LV, Emmert JT, Qian L. 2010. Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys Res Lett 37: L16103. https://doi.org/10.1029/2010GL044468. [Google Scholar]
- Stenflo JO. 2012. Basal magnetic flux and the local solar dynamo. A&A 547: A93. https://doi.org/10.1051/0004-6361/201219833. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Stewart JQ, Panofsky HAA. 1938. The mathematical characteristics of sunspot variations. Astrophys J 88: 385. https://doi.org/10.1086/143994. [NASA ADS] [CrossRef] [Google Scholar]
- Sun X, Bobra MG, Hoeksema JT, Liu Y, Li Y, Shen C, Couvidat S, Norton AA, Fisher GH. 2015. Why is the great solar active region 12192 flare-rich but CME-poor? Astrophys J Lett 804: L28. https://doi.org/10.1088/2041-8205/804/2/L28. [NASA ADS] [CrossRef] [Google Scholar]
- Svalgaard L, Cliver E, Kamide Y. 2005. Cycle 24: The smallest sunspot cycle in 100 years? Geophys Res Lett 32: L01104. https://doi.org/10.1029/2004GL021664. [Google Scholar]
- Svedin A. 2013. Nonlinear data assimilation: Towards a prediction of the solar cycle. Ph.D. thesis, Columbia University, New York. [Google Scholar]
- Svedin A, Cuéllar MC, Brandenburg A. 2013. Data assimilation for stratified convection. Mon Not R Astron Soc 433: 2278–2285. https://doi.org/10.1093/mnras/stt891. [CrossRef] [Google Scholar]
- Tapping KF, Charrois DP. 1994. Limits to the accuracy of the 10.7 cm flux. Sol Phys 150: 305–315. https://doi.org/10.1007/BF00712892. [Google Scholar]
- Tlatov AG. 2009. The minimum activity epoch as a precursor of the solar activity. Sol Phys 260(2): 465–477. https://doi.org/10.1007/s11207-009-9451-5. [Google Scholar]
- Upton LA, Hathaway DH. 2018. An updated Solar Cycle 25 prediction with AFT: The modern minimum. Geophys Res Lett 45: 8091–8095. https://doi.org/10.1029/2018GL078387. [CrossRef] [Google Scholar]
- Upton L, Biesecker D, The Solar Cycle 25 Prediction Panel. 2019. Solar Cycle 25 predictions. URL https://www.swpc.noaa.gov/sites/default/files/images/u59/10%20Lisa%20Upton%20Official.pdf. [Google Scholar]
- Vitinskii YI. 1965. Solar-activity forecasting. In: Vol. F-289 of Technical translation, NASA, Scientific and Technical Information Office, Washington, DC. [Google Scholar]
- Wang Y-M, Sheeley NR Jr. 2002. Sunspot activity and the long-term variation of the Sun’s open magnetic flux. J Geophys Res: Space Phys 107(A10): SSH 10–1–SSH 10–15. https://doi.org/10.1029/2001JA000500. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JA000500. [CrossRef] [Google Scholar]
- Weatherley TF. 1980. Sunspots. What Do They Mean? — Your guess is an good as mine. 73 Magazine, pp. 28–30. https://archive.org/stream/73-magazine-1980-04/04_April_1980#page/n29/mode/2up. [Google Scholar]
- Wolf R. 1861. Mittheilungen über die Sonnenflecken XII. Astron Mitt Eidgenüssischen Sternwarte Zurich 2: 41–82. [Google Scholar]
- Yeates AR, Muñoz-Jaramillo A. 2013. Kinematic active region formation in a three-dimensional solar dynamo model. Mon Not R Astron Soc 436: 3366–3379. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.