Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 61 | |
Number of page(s) | 24 | |
DOI | https://doi.org/10.1051/swsc/2020062 | |
Published online | 07 December 2020 |
- Ahn BH, Moon G-H. 2003. Seasonal and universal time variations of the AU, AL and Dst indices. J Kor Ast Soc 36: S93–S99. [CrossRef] [Google Scholar]
- Ahn BH, Kroehl HW, Kamide Y, Kihn E. 2000. Universal time variations of the auroral electrojet indices. J Geophys Res 105: 267–275. https://doi.org/10.1029/1999JA900364. [CrossRef] [Google Scholar]
- Allen JH, Kroehl HW. 1975. Spatial and Temporal Distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80: 3667–3677. https://doi.org/10.1029/JA080i025p03667. [CrossRef] [Google Scholar]
- Alexeev II, Belenkaya ES, Kalegaev VV, Feldstein Y-I, Grafe A. 1996. Magnetic storms and magnetotail currents. J Geophys Res 101: 7737–7747. https://doi.org/10.1029/95JA03509. [CrossRef] [Google Scholar]
- Berthelier A. 1976. Influence of the polarity of the interplanetary magnetic field on the annual and the diurnal variations of magnetic activity. J Geophys Res 81(25): 4546–4552. https://doi.org/10.1029/ja081i025p04546. [CrossRef] [Google Scholar]
- Blagau A, Paschmann G, Klecker B, Marghitu O. 2015. Experimental test of the ρ(1-α) evolution for rotational discontinuities: Cluster magnetopause observations. Ann Geophys 33: 79–91. https://doi.org/10.5194/angeo-33-79-2015. [CrossRef] [Google Scholar]
- Boller BR, Stolov HL. 1970. Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. J Geophys Res 75: 6073. https://doi.org/10.1029/JA075i031p06073. [CrossRef] [Google Scholar]
- Boyle CB, Reiff PH, Hairston MR. 1997. Empirical polar cap potentials. J Geophys Res Space Phys 102(A1): 111–125. https://doi.org/10.1029/96JA01742. [CrossRef] [Google Scholar]
- Burton RK, Mcpherron R, Russell CT. 1979. Empirical relationship between interplanetary conditions and Dst. J Geophys Res Space Phys 80(31): 4204–4214. https://doi.org/10.1029/JA080i031p04204. [Google Scholar]
- Caan MN, McPherron RL, Russell CT. 1973. Solar wind and substorm-related changes in the lobes of the geomagnetic tail. J Geophys Res 78(34): 8087–8096. https://doi.org/10.1029/ja078i034p08087. [CrossRef] [Google Scholar]
- Chambodut A, Marchaudon A, Menvielle M, El-Lemdani F, Lathuillere C. 2013. The K-derived MLT sector geomagnetic indices. Geophys Res Lett 40: 4808–4812. https://doi.org/10.1002/grl.50947. [CrossRef] [Google Scholar]
- Cliver EW, Kamide Y, Ling AG. 2000. Mountains versus valleys: Semiannual variation of geomagnetic activity. J Geophys Res 105: 2413–2424. https://doi.org/10.1029/1999JA900439. [NASA ADS] [CrossRef] [Google Scholar]
- Cowley SWH, Lockwood M. 1992. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann Geophys 10: 103–115. [Google Scholar]
- Cnossen I, Wiltberger M, Ouellette JE. 2012. The effects of seasonal and diurnal variations in the Earth’s magnetic dipole orientation on solar wind–magnetosphere-ionosphere coupling. J Geophys Res 117: A11211. https://doi.org/10.1029/2012JA017825. [Google Scholar]
- Crooker NU, Siscoe GL. 1986. On the limits of energy transfer through dayside merging. J Geophys Res 91: 13393–13397. https://doi.org/10.1029/JA091iA12p13393. [CrossRef] [Google Scholar]
- Crooker NU, Cliver EW, Tsurutani BT. 1992. The semiannual variation of great geomagnetic storms and the postshock Russell-McPherron effect preceding coronal mass ejecta. Geophys Res Lett 19: 429–433. https://doi.org/10.1029/92GL00377. [CrossRef] [Google Scholar]
- Danilov AA, Krymskii GF, Makarov GA. 2013. Geomagnetic activity as a reflection of processes in the magnetospheric tail: 1. The source of diurnal and semiannual variations in geomagnetic activity. Geomag Aeron 53(4): 441–447. https://doi.org/10.1134/S0016793213040051. [CrossRef] [Google Scholar]
- Davis TN, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71(3): 785–801. https://doi.org/10.1029/JZ071i003p00785. [CrossRef] [Google Scholar]
- de La Sayette P, Berthelier A. 1996. The am annual-diurnal variations 1959–1988: A 30-year evaluation. J Geophys Res 101(A5): 10653–10663. https://doi.org/10.1029/96JA00165. [CrossRef] [Google Scholar]
- De Zeeuw DL, Gombosi TI, Groth CPT, Powell KG, Stout QF. 2000. An adaptive MHD method for global space weather simulations. IEEE Trans Plasma Sci 28: 1956–1965. https://doi.org/10.1109/27.902224. [CrossRef] [Google Scholar]
- Erkaev NV, Farrugia CJ, Biernat HK. 1998. Comparison of gasdynamics and MHD predictions for magnetosheath flow. In: Polar Cap Boundary Phenomena. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 509, Moen J, Egeland A, Lockwood M, (Eds.) Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_3. [Google Scholar]
- Farrugia CJ, Gratton FT, Bender L, Biernat HK, Erkaev NV, Quinn JM, Torbert RB, Dennisenko V. 1998. Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilites at the dayside magnetopause for strongly northward interplanetary magnetic field. J Geophys Res 103(A4): 6703–6727. https://doi.org/10.1029/97JA03248. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M. 2007. Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann Geophys 25: 495–506. https://doi.org/10.5194/angeo-25-495-2007. [CrossRef] [Google Scholar]
- Finch ID, Lockwood M, Rouillard AP. 2008. The effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: Separation of directly-driven and storage/release systems. Geophys Res Lett 35: L21105. https://doi.org/10.1029/2008GL035399. [CrossRef] [Google Scholar]
- Gombosi TI, Tóth G, De Zeeuw DL, Hansen KC, Kabin K, Powell KG. 2001. Semi-relativistic magnetohydrodynamics and physics-based convergence acceleration. J Comput Phys 177: 176–205. https://doi.org/10.1006/jcph.2002.7009. [CrossRef] [Google Scholar]
- Hoilijoki S, Souza VM, Walsh BM, Janhunen P, Palmroth M. 2014. Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF Bx. J Geophys Res Space Phys 119: 4484–4494. https://doi.org/10.1002/2013JA019693. [CrossRef] [Google Scholar]
- Jackson BV, Yu H-S, Buffington A, Hicks PP, Tokumaru M, Fujiki K, Kim J, Yun J. 2019. A daily determination of B-Z using the Russell-McPherron effect to forecast geomagnetic activity. Space Weather 17(4): 639–652. https://doi.org/10.1029/2018SW002098. [CrossRef] [Google Scholar]
- Kamide Y, Baumjohann W, Daglis IA, Gonzalez WD, Grande M, Joselyn JA, McPherron RL, Phillips JL, Reeves EGD, Rostoker G, Sharma AS, Singer HJ, Tsurutani B, Vasyliunas VM. 1998. Current understanding of magnetic storms: Storm-substorm relationships. J Geophys Res Space Phys 103(A8): 17705–17728. https://doi.org/10.1029/98JA01426. [CrossRef] [Google Scholar]
- Karlsson SBP, Opgenoorth HJ, Eglitis P, Kauristie K, Syrjäsuo M, Pulkkinen T, Lockwood M, Nakamura R, Reeves G, Romanov S. 2000. Solar wind control of magnetospheric energy content: Substorm quenching and multiple onsets. J Geophys Res 105: 5335–5356. https://doi.org/10.1029/1999JA900297. [CrossRef] [Google Scholar]
- Kartalev MD, Nikolova VI, Kamenetsky VF, Mastikov IP. 1996. On the self-consistent determination of dayside magnetopause shape and position. Planet Space Sci 44(10): 1195–1208. https://doi.org/10.1016/S0032-0633(96)00040-2. [CrossRef] [Google Scholar]
- Kitamura N, Hasegawa H, Saito Y, Shinohara I, Yokota S, Nagai T, Pollock CJ, Giles BL, Moore TE, Dorelli JC, Gershman DJ, Avanov LA, Paterson WR, Coffey VN, Chandler MO, Sauvaud JA, Lavraud B, Torbert RB, Russell CT, Strangeway RJ, Burch JL. 2017. Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations. Geophys Res Lett 43(11): 5581–5588. https://doi.org/10.1002/2016GL069095. [CrossRef] [Google Scholar]
- Kivelson MG, Hughes WJ. 1990. On the threshold for triggering substorms. Planet Space Sci 38: 211–220. https://doi.org/10.1016/0032-0633(90)90085-5. [CrossRef] [Google Scholar]
- Kokubun S, McPherron RL, Russell CT. 1977. Triggering of substorms by solar wind discontinuities. J Geophys Res 82(1): 74–86. https://doi.org/10.1029/ja082i001p00074. [CrossRef] [Google Scholar]
- Kubyshkina M, Tsyganenko N, Semenov V, Kubyshkina D, Partamies N, Gordeev E. 2015. Further evidence for the role of magnetotail current shape in substorm initiation. Earth Planets Space 67: 139. https://doi.org/10.1186/s40623-015-0304-1. [CrossRef] [Google Scholar]
- Kubyshkina M, Sergeev VA, Tsyganenko NA, Zheng Y. 2019. Testing efficiency of empirical, adaptive, and global MHD magnetospheric models to represent the geomagnetic field in a variety of conditions. Space Weather 17: 672–686. https://doi.org/10.1029/2019SW002157. [CrossRef] [Google Scholar]
- Kuznetsov SN, Suvorova AV. 1998. An empirical model of the magnetopause for broad ranges of solar wind pressure and BZ IMF. In: Polar Cap Boundary Phenomena. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 509, Moen J, Egeland A, Lockwood M, (eds.) Springer, Dordrecht. pp. 51–61. [CrossRef] [Google Scholar]
- Lin RL, Zhang XX, Liu SQ, Wang YL, Gong JC. 2010. A three-dimensional asymmetric magnetopause model. J Geophys Res 115: A04207. https://doi.org/10.1029/2009JA014235. [Google Scholar]
- Lockwood M. 2013. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev Sol Phys 10: 4. https://doi.org/10.12942/lrsp-2013-4. [CrossRef] [Google Scholar]
- Lockwood M. 2019. Does adding solar wind Poynting flux improve the optimum solar wind-magnetosphere coupling function?. J Geophys Res Space Phys 124: 5498–5515. https://doi.org/10.1029/2019JA026639. [CrossRef] [Google Scholar]
- Lockwood M, Cowley SWH. 1992. Ionospheric Convection and the substorm cycle. In: Substorms 1, Proceedings of the First International Conference on Substorms, ICS-1. Mattock C., (Ed.) European Space Agency Publications, Nordvijk, The Netherlands. pp. 99–109. [Google Scholar]
- Lockwood M, Hapgood MA. 1998. On the cause of a magnetospheric flux transfer event. J Geophys Res Space Phys 103: 26453–26478. https://doi.org/10.1029/98JA02244. [CrossRef] [Google Scholar]
- Lockwood M, Morley SE. 2004. A numerical model of the ionospheric signatures of time-varying magnetic reconnection: I. Ionospheric convection. Annales Geophys 22: 73–91. http://doi.org/10.5194/angeo-22-73-2004. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Bentley S, Scott CJ, Watt CE. 2016. On the origins and timescales of geoeffective IMF. Space Weather 14: 406–432. https://doi.org/10.1002/2016SW001375. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O. 2019a. The development of a space climatology: 1. Solar-wind magnetosphere coupling as a function of timescale and the effect of data gaps. Space Weather 17: 133–156. https://doi.org/10.1029/2018SW001856. [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019b. The development of a space climatology 2: The distribution of power input into the magnetosphere on a 3-hourly timescale. Space Weather 17: 157–179. https://doi.org/10.1029/2018SW002016. [CrossRef] [Google Scholar]
- Lockwood M, Bentley S, Owens MJ, Barnard LA, Scott CJ, Watt CE, Allanson O, Freeman MP. 2019c. The development of a space climatology: 3. The evolution of distributions of space weather parameters with timescale. Space Weather 17: 180–209. https://doi.org/10.1029/2018SW002017. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Finch ID, Barnard LA, Owens MJ, Haines C. 2019d. Time-of-day/time-of-year response functions of planetary geomagnetic indices. J Space Weather Space Clim 9: A20. https://doi.org/10.1051/swsc/2019017. [Google Scholar]
- Lockwood M, Owens MJ, Barnard LA, Haines C, Scott CJ, McWilliams KA, Coxon JC. 2020a. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J Space Weather Space Clim 10: 23. https://doi.org/10.1051/swsc/2020023. [CrossRef] [Google Scholar]
- Lockwood M, McWilliams KA, Owens MJ, Barnard LA, Watt CE, Scott CJ, Mcneil A, Coxon JC. 2020b. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. The effect of solar wind variations. J Space Weather Space Clim 10: 30. https://doi.org/10.1051/swsc/2020033. [CrossRef] [Google Scholar]
- Lu JY, Wang M, Kabin K, Zhao JS, Liu Z-Q, Zhao MX, Li G. 2015. Pressure balance across the magnetopause: Global MHD results. Planet Space Sci 106(2): 108–115. https://doi.org/10.1016/j.pss.2014.12.003. [CrossRef] [Google Scholar]
- Lu JY, Liu Z-Q, Kabin K, Zhao MX, Liu DD, Zhou Q, Xiao Y. 2011. Three dimensional shape of the magnetopause: Global MHD results. J Geophys Res 116: A09237. https://doi.org/10.1029/2010JA016418. [Google Scholar]
- Lyatsky W, Newell PT, Hamza A. 2001. Solar illumination as the cause of the equinoctial preference for geomagnetic activity. Geophys Res Lett 28(12): 2353–2356. https://doi.org/10.1029/2000GL012803. [NASA ADS] [CrossRef] [Google Scholar]
- Mayaud P-N. 1980. Derivation, meaning and use of geomagnetic indices. Geophysical Monograph 22American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM022. [Google Scholar]
- McPherron RL, Baker DN, Crooker NU. 2009. Role of the Russell–McPherron effect in the acceleration of relativistic electrons. J. Atmos. Sol.-Terr. Phys. 71(10–11): 1032–1044. https://doi.org/10.1016/j.jastp.2008.11.002. [CrossRef] [Google Scholar]
- Merkin VG, Sharma AS, Papadopoulos K, Milikh G, Lyon J, Goodrich C. 2005. Relationship between the ionospheric conductance, field aligned current, and magnetopause geometry: Global MHD simulations. Planet Space Sci 53(9): 873–879. https://doi.org/10.1016/j.pss.2005.04.001. [CrossRef] [Google Scholar]
- Munteanu C, Hamada A, Mursula K. 2019. High-speed solar wind streams in 2007–2008: Turning on the Russell-McPherron effect. J Geophys Res Space Phys 124(11): 8913–8927. https://doi.org/10.1029/2019JA026846. [CrossRef] [Google Scholar]
- O’Brien TP, McPherron RL. 2002. Seasonal and diurnal variation of Dst dynamics. J Geophys Res 107(A11): 1341. https://doi.org/10.1029/2002JA009435. [CrossRef] [Google Scholar]
- Olson WP. 1969. The shape of the tilted magnetopause. J Geophys Res 74(24): 5642–5651. https://doi.org/10.1029/JA074i024p05642. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Skura JP, Meng C-I, Lyatsky W. 2002. Ultraviolet insolation drives seasonal and diurnal space weather variations. J Geophys Res 107(A10): 1305. https://doi.org/10.1029/2001JA000296. [CrossRef] [Google Scholar]
- Nowada M, Shue J-H, Russell CT. 2009. Effects of dipole tilt angle on geomagnetic activity. Planet Space Sci 57(11): 1254–1259. https://doi.org/10.1016/j.pss.2009.04.007. [CrossRef] [Google Scholar]
- Papitashvili VO, Rich FJ. 2002. High-latitude ionospheric convection models derived from Defense Meteorological satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction. J Geophys Res 107(A8): 1198. https://doi.org/10.1029/2001JA000264. [CrossRef] [Google Scholar]
- Park KS, Ogino T, Walker RJ. 2006. On the importance of antiparallel reconnection when the dipole tilt and IMF by are nonzero. J Geophys Res (Space Phys) 111(A5): 2156–2202. https://doi.org/10.1029/2004JA010972. [Google Scholar]
- Paschmann G, Papamastorakis I, Baumjohann W, Sckopke N, Carlson CW, Sonnerup BUO, Luhr H. 1986. The magnetopause for large magnetic shear – AMPTE/IRM observations. J Geophys Res Space Phys 91, A10: 1099–1115. https://doi.org/10.1029/JA091iA10p11099. [Google Scholar]
- Petrinec SM, Russell CT. 1997. Investigations of hydrodynamic and magnetohydrodynamic equations across the bow shock and along the outer edge of planetary obstacles. Adv Space Res 20(4–5): 743–746. https://doi.org/10.1016/s0273-1177(97)00465-1. [CrossRef] [Google Scholar]
- Powell K, Roe P, Linde I, Gombosi TI, De Zeeuw DL. 1999. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comp Phys 154: 284–309. https://doi.org/10.1006/jcph.1999.6299. [CrossRef] [Google Scholar]
- Rastaetter L, Kuznetsova MM, Vapirev A, Ridley A, Wiltberger M, Pulkkinen A, Hesse M, Singer HJ. 2011. Geospace Environment Modeling 2008–2009 challenge: Geosynchronous magnetic field. Space Weather 9: S04005. https://doi.org/10.1029/2010SW000617. [Google Scholar]
- Reiff PH, Daou AG, Sazykin SY, Nakamura R, Hairston MR, Coffey V, Chandler MO, Anderson BJ, Russell CT, Welling D, Fuselier SA, Genestreti KJ. 2016. Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm. Geophys Res. Lett 43: 7311–7318. https://doi.org/10.1002/2016GL069154. [CrossRef] [Google Scholar]
- Richmond AD, Kamide Y. 1988. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J Geophys Res 93: 5741–5759. https://doi.org/10.1029/JA093iA06p05741. [CrossRef] [Google Scholar]
- Ridley AJ, Hansen KC, Tóth G, De Zeeuw DL, Gombosi TI, Powell KG. 2002. University of Michigan MHD results of the Geospace Global Circulation Model metrics challenge. J Geophys Res 107(A10): 1290. https://doi.org/10.1029/2001JA000253. [CrossRef] [Google Scholar]
- Ridley AJ, Gombosi TI, DeZeeuw DL. 2004. Ionospheric control of the magnetosphere: conductance. Ann Geophys 22: 567–584. https://doi.org/10.5194/angeo-22-567-2004. [CrossRef] [Google Scholar]
- Ridley AJ, Gombosi TI, Sokolov VI, Tόth G, Welling DT. 2010. Numerical considerations in simulating the global magnetosphere. Ann Geophys 28: 1589–1614. https://doi.org/10.5194/angeo-28-1589-2010. [CrossRef] [Google Scholar]
- Ridley AJ, De Zeeuw DL, Rastaetter L. 2016. Rating global magnetosphere model simulations through statistical data-model comparisons. Space Weather 14: 819–834. https://doi.org/10.1002/2016SW001465. [CrossRef] [Google Scholar]
- Roelof EC, Sibeck DG. 1993. Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res. 98(A12): 21421– 21450. https://doi.org/10.1029/93JA02362. [CrossRef] [Google Scholar]
- Russell CT. 1989. The universal time variation of geomagnetic activity. Geophys Res Lett 16(6): 555–558. https://doi.org/10.1029/gl016i006p00555. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78: 82–108. https://doi.org/10.1029/JA078i001p00092. [Google Scholar]
- Russell CT, Wang YL, Raeder J. 2003. Possible dipole tilt dependence of dayside magnetopause reconnection. Geophys Res Lett 30(18): 1937. https://doi.org/10.1029/2003GL017725. [CrossRef] [Google Scholar]
- Schield MA. 1969. Pressure balance between solar wind and magnetosphere. J Geophys Res 74(5): 1275–1286. https://doi.org/10.1029/JA074i005p01275. [CrossRef] [Google Scholar]
- Schieldge JP, Siscoe GL. 1970. A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J Atmos Terr Phys 32(11): 1819–1830. https://doi.org/10.1016/0021-9169(70)90139-x. [CrossRef] [Google Scholar]
- Shue J-H, Song P. 2002. The location and shape of the magnetopause. Planet Space Sci 50: 549–558. https://doi.org/10.1016/S0032-0633(02)00034-X. [CrossRef] [Google Scholar]
- Shue J-H, Chao JK, Fu HC, Russell CT, Song P, Khurana KK, Singer HJ. 1997. A new functional form to study the solar wind control of the magnetopause size and shape. J Geophys Res 102(A5): 9497–9511. https://doi.org/10.1029/97JA00196. [NASA ADS] [CrossRef] [Google Scholar]
- Sibeck DG, Lopez RE, Roelof EC. 1991. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res 96(A4): 5489–5495. https://doi.org/10.1029/90JA02464. [CrossRef] [Google Scholar]
- Sonnerup BUO, Paschmann G, Haaland S, Phan T, Eriksson S. 2016. Reconnection layer bounded by switch-off shocks: Dayside magnetopause crossing by THEMIS D. J Geophys Res Space Phys 121: 3310–3332. https://doi.org/10.1002/2016JA022362. [CrossRef] [Google Scholar]
- Sotirelis T. 1996. The shape and field of the magnetopause as determined from pressure balance. J Geophys Res 101(A7): 15255–15264. https://doi.org/10.1029/96JA01084. [CrossRef] [Google Scholar]
- Sotirelis T, Meng C-I. 1999. Magnetopause from pressure balance. J Geophys Res 104(A4): 6889–6898. https://doi.org/10.1029/1998JA900119. [CrossRef] [Google Scholar]
- Spreiter JR, Summers AL, Alksne AY. 1966. Hydromagnetic flow around the magnetosphere. Planet Space Sci 14(3): 223–253. https://doi.org/10.1016/0032-0633(66)90124-3. [NASA ADS] [CrossRef] [Google Scholar]
- Svalgaard L. 1977. Geomagnetic activity: Dependence on solar wind parameters. In: Coronal Holes and High Speed Wind Streams. Zirker JB, (Ed.) Colorado Associated University Press, Louisville, Colorado. pp. 371–441. http://adsabs.harvard.edu/abs/1977chhs.conf..371S [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, et al. 2015. International geomagnetic reference field: The 12th generation. Earth Planets Space 67: 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Toffoletto F, Sazykin S, Spiro R, Wolf R. 2003. Inner magnetospheric modeling with the Rice Convection Model. Space Sci Rev 107: 175–196. https://doi.org/10.1007/978-94-007-1069-6_19. [CrossRef] [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, Hansen KC, Kane J, Manchester WB, Oehmke RC, Powell KG, Ridley AJ, Roussev II, Stout QF, Volberg O, Wolf RA, Sazykin S, Chan A, Yu B, Kόta J. 2005. Space Weather Modeling Framework: A new tool for the space science community. J Geophys Res 110: A12226. https://doi.org/10.1029/2005JA011126. [CrossRef] [Google Scholar]
- Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, Fang F, Manchester WB, Meng X, Najib D, Powell KG, Stout QF, Glocer A, Ma Y-J, Opher M. 2012. Adaptive numerical algorithms in space weather modelling. J Comp Phys 231(3): 870–903. https://doi.org/10.1016/j.jcp.2011.02.006. [CrossRef] [Google Scholar]
- Trattner K-H, Petrinec J, Fuselier SA, Phan TD. 2012. The location of reconnection at the magnetopause: Testing the maximum magnetic shear model with THEMIS observations. J. Geophys. Res. (Space Phys) 117: A01201. https://doi.org/10.1029/2011JA016959. [Google Scholar]
- Vasyliunas VM, Kan JR, Siscoe GL, Akasofu S-I. 1982. Scaling relations governing magnetospheric energy transfer. Planet Space Sci 30: 359–365. https://doi.org/10.1016/0032-0633(82)90041-1. [CrossRef] [Google Scholar]
- Yue C, Bortnik J, Li W, Ma Q, Wang C-P, Thorne RM, et al. 2019. Oxygen ion dynamics in the Earth’s ring current: Van Allen Probes observations. J Geophys Res (Space Phys) 124: 7786–7798. https://doi.org/10.1029/2019JA026801. [CrossRef] [Google Scholar]
- Zhang J, Liemohn MW, De Zeeuw DL, Borovsky JE, Ridley AJ, Tόth G, Sazykin S, Thomsen MF, Kozyra JU, Gombosi TI, Wolf RA. 2007. Understanding storm-time ring current development through data-model comparisons of a moderate storm. J Geophys Res 112: A04208. https://doi.org/10.1029/2006JA011846. [Google Scholar]
- Zhao H, Zong QG. 2012. Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. J Geophys Res 117: A11222. https://doi.org/10.1029/2012JA017845. [Google Scholar]
- Zhu CB, Zhang H, Ge YS, Pu ZY, Liu WL, Wan WX, Liu LB, Chen YD, Le HJ, Wang YF. 2015. Dipole tilt angle effect on magnetic reconnection locations on the magnetopause. J Geophys Res (Space Phys) 120(7): 5344–5354. https://doi.org/10.1002/2015JA020989. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.