Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 62 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2020064 | |
Published online | 11 December 2020 |
- Bhowmik P, Nandy D. 2018. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat Commun 9: 5209. https://doi.org/10.1038/s41467-018-07690-0, https://ui.adsabs.harvard.edu/abs/2018NatCo…9.5209B. [NASA ADS] [CrossRef] [Google Scholar]
- Cameron RH, Schüssler M. 2010. Changes of the solar meridional velocity profile during cycle 23 explained by flows toward the activity belts. ApJ 720: 1030–1032. https://doi.org/10.1088/0004-637X/720/2/1030. [NASA ADS] [CrossRef] [Google Scholar]
- Cameron RH, Schüssler M. 2012. Are the strengths of solar cycles determined by converging flows towards the activity belts? A&A 548: A57. https://doi.org/10.1051/0004-6361/201219914. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cameron R, Schüssler M. 2015. The crucial role of surface magnetic fields for the solar dynamo. Science 347(6228): 1333–1335. https://doi.org/10.1126/science.1261470. [NASA ADS] [CrossRef] [Google Scholar]
- Cameron RH, Schüssler M. 2017. Understanding solar cycle variability. ApJ 843(2): 111. https://doi.org/10.3847/1538-4357/aa767a. [NASA ADS] [CrossRef] [Google Scholar]
- Cameron RH, Dasi-Espuig M, Jiang J, Işık E, Schmitt D, Schüssler M. 2013. Limits to solar cycle predictability: Cross-equatorial flux plumes. A&A 557: A141. https://doi.org/10.1051/0004-6361/201321981. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Charbonneau P. 2014. Solar dynamo theory. Annu Rev A&A. 52: 251–290. https://doi.org/10.1146/annurev-astro-081913-040012. [NASA ADS] [CrossRef] [Google Scholar]
- Charbonneau P, Blais-Laurier G, St-Jean C. 2004. Intermittency and phase persistence in a Babcock-Leighton model of the solar cycle. Astrophys J Lett 616(2): L183–L186. https://doi.org/10.1086/426897. [NASA ADS] [CrossRef] [Google Scholar]
- Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T. 2010. Sunspot group tilt angles and the strength of the solar cycle. A&A 518: A7. https://doi.org/10.1051/0004-6361/201014301. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- DeVore CR, Boris JP, Sheeley NR Jr. 1984. The concentration of the large-scale solar magnetic field by a meridional surface flow. Sol Phys 92(1–2): 1–14. https://doi.org/10.1007/BF00157230. [NASA ADS] [CrossRef] [Google Scholar]
- Fan Y. 2009. Magnetic fields in the solar convection zone. Living Rev Sol Phys 6(1): 4. https://doi.org/10.12942/lrsp-2009-4. [Google Scholar]
- Gizon L. 2004. Helioseismology of time-varying flows through the solar cycle. Sol Phys 224(1–2): 217–228. https://doi.org/10.1007/s11207-005-4983-9. [NASA ADS] [CrossRef] [Google Scholar]
- González Hernández I, Howe R, Komm R, Hill F. 2010. Meridional circulation during the extended solar minimum: Another component of the torsional oscillation? ApJ 713: L16–L20. https://doi.org/10.1088/2041-8205/713/1/L16. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH, Rightmire L. 2010. Variations in the Sun’s meridional flow over a solar cycle. Science 327(5971): 1350. https://doi.org/10.1126/science.1181990. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH, Upton LA. 2016. Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res: Space Res 121(11): 10744–10753. https://doi.org/10.1002/2016JA023190, https://ui.adsabs.harvard.edu/abs/2016JGRA..12110744H. [Google Scholar]
- Hazra S, Passos D, Nandy D. 2014. A stochastically forced time delay Solar Dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect. ApJ 789(1): 5. https://doi.org/10.1088/0004-637X/789/1/5. [NASA ADS] [CrossRef] [Google Scholar]
- Howe R. 2009. Solar interior rotation and its variation. Living Rev Sol Phys 6(1): 1. https://doi.org/10.12942/lrsp-2009-1. [CrossRef] [Google Scholar]
- Jha BK, Karak BB, Mandal S, Banerjee D. 2020. Magnetic field dependence of bipolar magnetic region tilts on the Sun: Indication of tilt quenching. Astrophys J Lett 889(1): L19. https://doi.org/10.3847/2041-8213/ab665c. [CrossRef] [Google Scholar]
- Jiang J, Işık E, Cameron RH, Schmitt D, Schüssler M. 2010. The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. ApJ 717: 597–602. https://doi.org/10.1088/0004-637X/717/1/597. [NASA ADS] [CrossRef] [Google Scholar]
- Jiang J, Cameron RH, Schüssler M. 2014a. Effects of the scatter in Sunspot Group tilt angles on the large-scale magnetic field at the solar surface. ApJ 791(1): 5. https://doi.org/10.1088/0004-637X/791/1/5. [NASA ADS] [CrossRef] [Google Scholar]
- Jiang J, Hathaway DH, Cameron RH, Solanki SK, Gizon L, Upton L. 2014b. Magnetic flux transport at the solar surface. Space Sci Rev 186(1–4): 491–523. https://doi.org/10.1007/s11214-014-0083-1. [NASA ADS] [CrossRef] [Google Scholar]
- Karak BB, Choudhuri AR. 2012. Quenching of meridional circulation in flux transport dynamo models. Sol Phys 278(1): 137–148. https://doi.org/10.1007/s11207-012-9928-5. [NASA ADS] [CrossRef] [Google Scholar]
- Karak BB, Miesch M. 2017. Solar cycle variability induced by tilt angle scatter in a Babcock-Leighton Solar Dynamo Model. ApJ 847(1): 69. https://doi.org/10.3847/1538-4357/aa8636. [NASA ADS] [CrossRef] [Google Scholar]
- Komm RW, Howard RF, Harvey JW. 1993. Meridional flow of small photospheric magnetic features. Sol Phys 147(2): 207–223. https://doi.org/10.1007/BF00690713. [NASA ADS] [CrossRef] [Google Scholar]
- Kumar R, Jouve L, Nandy D. 2019. A 3D kinematic Babcock Leighton solar dynamo model sustained by dynamic magnetic buoyancy and flux transport processes. A&A 623: A54. https://doi.org/10.1051/0004-6361/201834705. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lemerle A, Charbonneau P. 2017. A coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. II. Reference dynamo solutions. ApJ 834: 133. Dynamo, https://doi.org/10.3847/1538-4357/834/2/133. [NASA ADS] [CrossRef] [Google Scholar]
- Lemerle A, Charbonneau P, Carignan-Dugas A. 2015. A coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. I. Surface magnetic flux evolution. ApJ 810: 78. Dynamo, https://doi.org/10.1088/0004-637X/810/1/78. [NASA ADS] [CrossRef] [Google Scholar]
- Martin-Belda D, Cameron RH. 2017. Inflows towards active regions and the modulation of the solar cycle: A parameter study. A&A 597: A21. https://doi.org/10.1051/0004-6361/201629061. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- McClintock BH, Norton AA. 2013. Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol Phys 287(1–2): 215–227. https://doi.org/10.1007/s11207-013-0338-0. [CrossRef] [Google Scholar]
- Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P. 2017. The effect of “Rogue” active regions on the solar cycle. Sol Phys 292: 167. https://doi.org/10.1007/s11207-017-1194-0, https://ui.adsabs.harvard.edu/abs/2017SoPh..292..167N. [NASA ADS] [CrossRef] [Google Scholar]
- Nagy M, Lemerle A, Charbonneau P. 2019. Impact of rogue active regions on hemispheric asymmetry. Adv Space Res 63: 1425–1433. https://doi.org/10.1016/j.asr.2018.12.018, https://ui.adsabs.harvard.edu/abs/2019AdSpR..63.1425N. [CrossRef] [Google Scholar]
- Ölçek D, Charbonneau P, Lemerle AR, Longpré G, Boileau F. 2019. Grand activity minima and maxima via dual dynamos. Sol Phys 294(7): 99. https://doi.org/10.1007/s11207-019-1492-9. [CrossRef] [Google Scholar]
- Ossendrijver MAJH. 2000. Grand minima in a buoyancy-driven solar dynamo. A&A 359: 364–372. https://ui.adsabs.harvard.edu/abs/2000A%26A...359..364O/abstract. [Google Scholar]
- Passos D, Charbonneau P, Beaudoin P. 2012. An exploration of non-kinematic effects in flux transport dynamos. Sol Phys 279(1): 1–22. https://doi.org/10.1007/s11207-012-9971-2. [NASA ADS] [CrossRef] [Google Scholar]
- Passos D, Nandy D, Hazra S, Lopes I. 2014. A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: Fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. A&A 563: A18. https://doi.org/10.1051/0004-6361/201322635. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Petrovay K, Forgács-Dajka E. 2002. The role of active regions in the generation of torsional oscillations. Sol Phys 205(1): 39–52. https://doi.org/10.1023/A:1013833709489, https://ui.adsabs.harvard.edu/abs/2002SoPh..205...39P. [CrossRef] [Google Scholar]
- Petrovay K, Christensen UR. 2010. The magnetic Sun: Reversals and long-term variations. Space Sci Rev 155(1–4): 371–385. https://doi.org/10.1007/s11214-010-9657-8, https://ui.adsabs.harvard.edu/abs/2010SSRv..155..371P. [CrossRef] [Google Scholar]
- Pevtsov AA, Berger MA, Nindos A, Norton AA, van Driel-Gesztelyi L. 2014. Magnetic helicity, tilt, and twist. Space Sci Rev 186(1–4): 285–324. https://doi.org/10.1007/s11214-014-0082-2. [Google Scholar]
- Rempel M. 2006. Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations. ApJ 647(1): 662–675. https://doi.org/10.1086/505170. [NASA ADS] [CrossRef] [Google Scholar]
- Schmitt D, Schuessler M, Ferriz-Mas A. 1996. Intermittent solar activity by an on-off dynamo. A&A 311: L1–L4. https://ui.adsabs.harvard.edu/abs/1996A%26A...311L...1S/abstract. [Google Scholar]
- Spruit HC. 2003. Origin of the torsional oscillation pattern of solar rotation. Sol Phys 213: 1–21. https://doi.org/10.1023/A:1023202605379. [NASA ADS] [CrossRef] [Google Scholar]
- Tlatova K, Tlatov A, Pevtsov A, Mursula K, Vasil’eva V, Heikkinen E, Bertello L, Pevtsov A, Virtanen I, Karachik N. 2018. Tilt of sunspot bipoles in solar cycles 15 to 24. Sol Phys 293(8): 118. https://doi.org/10.1007/s11207-018-1337-y. [NASA ADS] [CrossRef] [Google Scholar]
- Upton LA, Hathaway DH. 2018. An Updated Solar Cycle 25 Prediction With AFT: The Modern Minimum. Geophys Res Lett 45(16): 8091–8095. https://doi.org/10.1029/2018GL078387, https://ui.adsabs.harvard.edu/abs/2018GeoRL..45.8091U. [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR Jr. 1989. Average properties of bipolar magnetic regions during sunspot cycle-21. Sol Phys 124(1): 81–100. https://doi.org/10.1007/BF00146521. [CrossRef] [Google Scholar]
- Whitbread T, Yeates AR, Muñoz-Jaramillo A. 2018. How many active regions are necessary to predict the solar dipole moment? ApJ 863(2): 116. https://doi.org/10.3847/1538-4357/aad17e. [NASA ADS] [CrossRef] [Google Scholar]
- Yeates AR, Muñoz-Jaramillo A. 2013. Kinematic active region formation in a three-dimensional solar dynamo model. Mon Not R Astron Soc 436(4): 3366–3379. https://doi.org/10.1093/mnras/stt1818. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.