Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space Weather Instrumentation
|
|
---|---|---|
Article Number | 63 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2020065 | |
Published online | 18 December 2020 |
- Agnelli G, Cacciani A, Fofi M. 1975. The magneto-optical filter. I – Preliminary observations in Na D lines. Sol Phys 44: 509–518. https://doi.org/10.1007/BF00153229. [CrossRef] [Google Scholar]
- Berrilli F, Bigazzi A, Roselli L, Sabatini P, Velli M, et al. 2010. The ADAHELI solar mission: Investigating the structure of Sun’s lower atmosphere. Adv Space Res 45: 1191–1202. https://doi.org/10.1016/j.asr.2010.01.026. [CrossRef] [Google Scholar]
- Berrilli F, Cocciolo M, Giovannelli L, Del Moro D, Giannattasio F, et al. 2011. The Fabry-Perot interferometer prototype for the ADAHELI solar small mission. In: vol. 8148 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 814807. https://doi.org/10.1117/12.893552. [Google Scholar]
- Berrilli F, Soffitta P, Velli M, Sabatini P, Bigazzi A, et al. 2015. ADAHELI: exploring the fast, dynamic Sun in the X-ray, optical, and near-infrared. J Astron Telesc Instrum Syst 1(4): 044006. https://doi.org/10.1117/1.JATIS.1.4.044006. [CrossRef] [Google Scholar]
- Cacciani A, Fofi M. 1978. The magneto-optical filter. II – Velocity field measurements. Sol Phys 59: 179–189. https://doi.org/10.1007/BF00154941. [NASA ADS] [CrossRef] [Google Scholar]
- Cacciani A, Marmolino C, Moretti PF, Oliviero M, Severino G, Smaldone LA. 1997. Simultaneous Doppler and magnetic solar maps from a MOF installed at the Osservatorio di Capodimonte. Mem SaIt 68: 467. [Google Scholar]
- Cacciani A, Ricci D, Rosati P, Rhodes EJ, Smith E. 1990. Solar magnetic fields measurements with a magneto-optical filter. Nuovo Cimento C Geophys Space Phys C 13: 125–130. https://doi.org/10.1007/BF02515781. [NASA ADS] [CrossRef] [Google Scholar]
- Calchetti D, Jefferies SM, Fleck B, Berrilli F, Shcherbik DV. 2021. A new method for detecting solar atmospheric gravity waves. Phil Trans R Soc A 379: 20200178. https://doi.org/10.1098/rsta.2020.0178. [CrossRef] [Google Scholar]
- Calchetti D, Viavattene G, Berrilli F, Del Moro D, Giovannelli L, Oliviero M. 2020. Tor vergata Synoptic Solar Telescope: preliminary optical design and spectral characterization. J Phys Conf Ser 1548: 012005. https://doi.org/10.1088/1742-6596/1548/1/012005. [CrossRef] [Google Scholar]
- Cimino M, Cacciani A, Sopranzi N. 1968. An Instrument to measure Solar Magnetic Fields by an Atomic-Beam Method. 3: 618–622. https://doi.org/10.1007/BF00151943. [Google Scholar]
- Del Moro D, Berrilli F, Stangalini M, Giannattasio F, Piazzesi R, et al. 2012. IBIS: High-resolution multi-height observations and magnetic field retrieval. In: Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, Vol. 463 of Astronomical Society of the Pacific Conference Series, Rimmele TR, Tritschler A, Wöger F, Collados Vera M, Socas-Navarro H, Schlichenmaier R, Carlsson M, Berger T, Cadavid A, Gilbert PR, Goode PR, Knölker M (Eds.). Astronomical Society of the Pacific, 33 p. [Google Scholar]
- Elsworth Y, Broomhall A-M, Gosain S, Roth M, Jefferies SM, Hill F. 2015. The importance of long-term synoptic observations and data sets for solar physics and helioseismology. Space Sci Rev 196(1–4): 137–166. https://doi.org/10.1007/s11214-015-0212-5. [CrossRef] [Google Scholar]
- Finsterle W, Jefferies SM, Cacciani A, Rapex P, Giebink C, Knox A, Dimartino V. 2004a. Seismology of the solar atmosphere. Sol Phys 220: 317–331. https://doi.org/10.1023/B:SOLA.0000031397.73790.7b. [NASA ADS] [CrossRef] [Google Scholar]
- Finsterle W, Jefferies SM, Cacciani A, Rapex P, McIntosh SW. 2004b. Helioseismic mapping of the magnetic canopy in the solar chromosphere. Astrophys J 613(2): L185–L188. https://doi.org/10.1086/424996. [NASA ADS] [CrossRef] [Google Scholar]
- Fussell JA, Brazier RI, Davies AR, Isaak GR, McCleod CP, Morgan-Vandome SC, Speake CC. 1995. Observations of Global Solar Oscillations in Moonlight. In: GONG 1994. Helio- and Astro-Seismology from the Earth and Space, vol. 76 of Astronomical Society of the Pacific Conference Series, Ulrich RK, Rhodes EJ, Dappen W. (Eds.). 452 p. [Google Scholar]
- Giovannelli L, Berrilli F, Calchetti D, Del Moro D, Viavattene G, et al. 2020. The Tor Vergata Synoptic Solar Telescope (TSST): a robotic, compact facility for solar full disk imaging. Nuovo Cimento della Societa Italiana di Fisica C 43 (4–5): 120. https://doi.org/10.1393/ncc/i2020-20120-6. [Google Scholar]
- Giovannelli L, Berrilli F, Cocciolo M, Del Moro D, Egidi A, Piazzesi R. 2012a. The birth of Tor Vergata Fabry-Pérot interferometer. J Phys Conf Ser 383: 012014. https://doi.org/10.1088/1742-6596/383/1/012014. [CrossRef] [Google Scholar]
- Giovannelli L, Berrilli F, Cocciolo M, Del Moro D, Egidi A, Piazzesi R, Stangalini M. 2012b. Testing of the “Tor Vergata” Fabry-Pérot interferometer prototype. In: Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 84463Q. https://doi.org/10.1117/12.926349. [CrossRef] [Google Scholar]
- Giovannelli L, Berrilli F, Del Moro D, Greco V, Piazzesi R, Sordini A. 2014a. Optical tests of the LUTIN Fabry-Pérot prototype. J Phys Conf Ser 566: 012011. https://doi.org/10.1088/1742-6596/566/1/012011. [CrossRef] [Google Scholar]
- Giovannelli L, Berrilli F, Del Moro D, Greco V, Piazzesi R, Sordini A, Stangalini M. 2014b. Optical cavity characterization of the Tor Vergata Fabry-Pérot interferometer. In Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 914782: https://doi.org/10.1117/12.2056477. [Google Scholar]
- Greco V, Cavallini F, Berrilli F. 2010. The telescope and the double Fabry-Pérot interferometer for the ADAHELI solar space mission. Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave 7731: 773142. https://doi.org/10.1117/12.856617. [CrossRef] [Google Scholar]
- Jefferies SM, Fleck B, Murphy N, Berrilli F. 2019. Observed local dispersion relations for magnetoacoustic-gravity waves in the Sun’s atmosphere: Mapping the acoustic cutoff frequency 884(1): L8. https://doi.org/10.3847/2041-8213/ab4719. [Google Scholar]
- Jefferies SM, McIntosh SW, Armstrong JD, Bogdan TJ, Cacciani AR, Fleck B. 2006. Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys J 648(2): L151–L155. https://doi.org/10.1086/508165. [NASA ADS] [CrossRef] [Google Scholar]
- Kumar P, Park S-H, Cho KS, Bong SC. 2013. Multiwavelength Study of a Solar Eruption from AR NOAA 11112 I. Flux Emergence, Sunspot Rotation and Triggering of a Solar Flare 282(2): 503–521. https://doi.org/10.1007/s11207-012-0174-7. [Google Scholar]
- Magrì M, Oliviero M, Severino G. 2005. An observational method to prevent cross-talk and calibrate Mof-based instruments. Sol Phys 232: 159–170. https://doi.org/10.1007/s11207-005-8764-2. [CrossRef] [Google Scholar]
- Magrì M, Oliviero M, Severino G. 2006. A new method to calibrate MOF-based instruments. Memorie della Societa Astronomica Italiana Supplementi 9: 112. [Google Scholar]
- Magrì M, Oliviero M, Severino G. 2008. Accurate intensity – Velocity phase difference in the potassium resonance line obtained with VAMOS. Sol Phys 247: 15–23. https://doi.org/10.1007/s11207-007-9035-1. [CrossRef] [Google Scholar]
- Moretti PF, Berrilli F, Bigazzi A, Jefferies SM, Murphy N, Roselli L, di Mauro MP. 2010. Future instrumentation for solar physics: a double channel MOF imager on board ASI Space Mission ADAHELI. Astrophys Space Sci 328: 313–318. https://doi.org/10.1007/s10509-009-0251-z. [CrossRef] [Google Scholar]
- Moretti PF, Severino G, Cauzzi G, Reardon K, Straus T, Cacciani A, Marmolino C, Oliviero M, Smaldone LA. 1997. The magneto-optical filter in Napoli: Perspectives and test observations. In: SCORe’96: Solar Convection and Oscillations and their Relationship, vol. 225 of Astrophysics and Space Science Library, Pijpers FP, Christensen-Dalsgaard J, Rosenthal CS (Eds.) Kluwer Academic Publishers. pp. 293–296. https://doi.org/10.1007/978-94-011-5167-2_32. [CrossRef] [Google Scholar]
- Nagashima K, Löptien B, Gizon L, Birch AC, Cameron R, Couvidat S, Danilovic S, Fleck B, Stein R. 2014. Interpreting the Helioseismic and Magnetic Imager (HMI) Multi-Height Velocity Measurements. Sol Phys 289(9): 3457–3481. https://doi.org/10.1007/s11207-014-0543-5. [NASA ADS] [CrossRef] [Google Scholar]
- Oliviero M, Severino G, Berrilli F, Moretti PF, Jefferies SM. 2011. The intensity effect in magneto-optical filters. Solar Physics and Space Weather Instrumentation IV 8148: 81480V. https://doi.org/10.1117/12.893613 [CrossRef] [Google Scholar]
- Oliviero M, Severino G, Esposito G. 2010. Planning magneto-optical filters for the study of magnetic oscillations of the Sun. Astrophys Space Sci 328: 325–329. https://doi.org/10.1007/s10509-010-0360-8. [CrossRef] [Google Scholar]
- Oliviero M, Severino G, Straus T. 1998a. The VAMOS Data Analysis Pipeline. In: Structure and Dynamics of the Interior of the Sun and Sun-like Stars, vol. 418 of ESA Special Publication, Korzennik S, (Ed.). European Space Agency, 275 p. [Google Scholar]
- Oliviero M, Severino G, Straus T. 1998b. VAMOS: velocity and intensity data analysis and first results on I–V phase difference at low l. Mem SaIt 69: 623. [Google Scholar]
- Otsu N. 1979. A threshold selection method from gray-level histograms. Systems, Man and Cybernetics, IEEE Transactions on 9(1): 62–66. https://doi.org/10.1109/TSMC.1979.4310076. [CrossRef] [Google Scholar]
- Rajaguru SP, Couvidat S, Sun X, Hayashi K, Schunker H. 2013. Properties of high-frequency wave power halos around active regions: An analysis of multi-height data from HMI and AIA Onboard SDO. Solar Dynamics and Magnetism from the Interior to the Atmosphere 287(1–2): 107–127. https://doi.org/10.1007/s11207-012-0180-9. [Google Scholar]
- Reddy B, Chatterji B. 1996. An FFT-based technique for translation, rotation, and scale-invariant image registration. Image Processing, IEEE Transactions on 5(8): 1266–1271. https://doi.org/10.1109/83.506761. [CrossRef] [Google Scholar]
- Rijs C, Moradi H, Przybylski D, Cally PS. 2015. MHD wave refraction and the acoustic halo effect around solar active regions: a 3D study. Astrophys J 801(1): 27. https://doi.org/10.1088/0004-637x/801/1/27. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol Phys 275, 207–227. https://doi.org/10.1007/s11207-011-9834-2. [NASA ADS] [CrossRef] [Google Scholar]
- Srivastava AK, Murawski K, Kuźma B, Wójcik DP, Zaqarashvili TV, Stangalini M, Musielak ZE, Doyle JG, Kayshap P, Dwivedi BN. 2018. Confined pseudo-shocks as an energy source for the active solar corona. Nature Astron 2: 951–956. https://doi.org/10.1038/s41550-018-0590-1. [NASA ADS] [CrossRef] [Google Scholar]
- Stangalini M, Jafarzadeh S, Ermolli I, Erdélyi R, Jess DB, Keys PH, Giorgi F, Murabito M, Berrilli F, Del Moro D. 2018a. Propagating spectropolarimetric disturbances in a large sunspot. Astrophys J 869(2): 110. https://doi.org/10.3847/1538-4357/aaec7b. [CrossRef] [Google Scholar]
- Stangalini M, Moretti PF, Berrilli F, Del Moro D, Jefferies SM, Severino G, Oliviero M. 2011. MOF-based instrument for Solar Satellite ADAHELI. Solar Physics and Space Weather Instrumentation IV 8148: 81480U. https://doi.org/10.1117/12.893579. [CrossRef] [Google Scholar]
- Stangalini M, Piazzesi R, Speziali R, Dal Sasso L. 2018b. SAMM: the solar activity MOF monitor. In: Ground-based and Airborne Telescopes VII, vol. 10700 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 107001K. https://doi.org/10.1117/12.2313373.. [Google Scholar]
- Straus T, Fleck B, Jefferies SM, Cauzzi G, McIntosh SW, Reardon K, Severino G, Steffen M. 2008. The energy flux of internal gravity waves in the lower solar atmosphere. Astrophys J Lett 681(2): L125. https://doi.org/10.1086/590495. [NASA ADS] [CrossRef] [Google Scholar]
- Tomczyk S, Streander K, Card G, Elmore D, Hull H, Cacciani A. 1995. An instrument to observe low-degree solar oscillations. Sol Phys 159: 1–21. https://doi.org/10.1007/BF00733027. [NASA ADS] [CrossRef] [Google Scholar]
- Viavattene G, Calchetti D, Berrilli F, Del Moro D, Giovannelli L, Pietropaolo E, Oliviero M, Terranegra L. 2020. Optical design of the Tor vergata Synoptic Solar Telescope (TSST). Nuovo Cimento della Societa Italiana di Fisica C 43 (4–5): 120. https://doi.org/10.1393/ncc/i2020-20120-6. [Google Scholar]
- Vigeesh G, Jackiewicz J, Steiner O. 2017. Internal gravity waves in the magnetized solar atmosphere. I. Magnetic Field Effects. Astrophys J 835(2): 148. https://doi.org/10.3847/1538-4357/835/2/148. [CrossRef] [Google Scholar]
- Vogt E, Oliviero M, Severino G, Straus T. 1999. Calibration of VAMOS Magnetic Data. In: Magnetic Fields and Solar Processes, vol. 448 of ESA Special Publication, Wilson A, et al. (Eds.) ESA, 405 p. [Google Scholar]
- Wang H, Liu C, Ahn K, Xu Y, Jing J, et al. 2017. High-resolution observations of flare precursors in the low solar atmosphere. Nature Astron 1: 0085. https://doi.org/10.1038/s41550-017-0085. [CrossRef] [Google Scholar]
- Wiśniewska A, Musielak ZE, Staiger J, Roth M. 2016. Observational evidence for variations of the acoustic cutoff frequency with height in the solar atmosphere. Astrophys J 819(2): L23–L01. https://doi.org/10.3847/2041-8205/819/2/L23. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.