Open Access
Issue |
J. Space Weather Space Clim.
Volume 10, 2020
|
|
---|---|---|
Article Number | 64 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2020067 | |
Published online | 18 December 2020 |
- Agueda N. 2008. Near-relativistic electron events. Monte Carlo simulations of solar injection and interplanetary transport, Ph.D. Thesis, Dep. Astronomia i Meteorologia University of Barcelona, Martí i Franquès 1 08028 Barcelona, Spain. [Google Scholar]
- Agueda N, Klein K-L, Vilmer N, Rodríguez-Gasén R, Malandraki OE, et al. 2014. Release timescales of solar energetic particles in the low corona. A&A 570: A5. https://doi.org/10.1051/0004-6361/201423549. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Agueda N, Lario D. 2016. Release history and transport parameters of relativistic solar electrons inferred from near-the-sun in situ observations. Astrophys J 829(2): 131. https://doi.org/10.3847/0004-637X/829/2/131. [NASA ADS] [CrossRef] [Google Scholar]
- Agueda N, Vainio R, Lario D, Sanahuja B. 2008. Injection and interplanetary transport of near-relativistic electrons: Modeling the impulsive event on 2000 May 1. Astrophys J 675: 1601–1613. https://doi.org/10.1086/527527. [NASA ADS] [CrossRef] [Google Scholar]
- Agueda N, Vainio R, Lario D, Sanahuja B. 2009. The influence of in situ pitch-angle cosine coverage on the derivation of solar energetic particle injection and interplanetary transport conditions. Adv Space Res 44(7): 794–800. https://doi.org/10.1016/j.asr.2009.05.023, URL http://www.sciencedirect.com/science/article/pii/S0273117709003767. [NASA ADS] [CrossRef] [Google Scholar]
- Alberti T, Laurenza M, Cliver EW, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys J 838(1): 59. https://doi.org/10.3847/1538-4357/aa5cb8. [CrossRef] [Google Scholar]
- Alcock B. 2018. Solar electron and radio propagation in the turbulent solar corona, Ph.D. Thesis, College of Science and Engineering, School of Physics and Astronomy, University of Glasgow, Glasgow, Scotland, UK. [Google Scholar]
- Aminalragia-Giamini S, Jiggens P, Anastasiadis A, Sandberg I, Aran A, et al. 2020. Prediction of solar proton event fluence spectra from their peak flux spectra. J Space Weather Space Clim 10: 1. https://doi.org/10.1051/swsc/2019043. [CrossRef] [Google Scholar]
- Balch CC. 2008. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6(1): S01001. https://doi.org/10.1029/2007SW000337. [CrossRef] [Google Scholar]
- Dresing N, Gómez-Herrero R, Heber B, Klassen A, Temmer M, Veronig A. 2018. Long-lasting injection of solar energetic electrons into the heliosphere. A&A 613: A21. https://doi.org/10.1051/0004-6361/201731573. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dröge W, Kartavykh YY, Dresing N, Heber B, Klassen A. 2014. Wide longitudinal distribution of interplanetary electrons following the 7 February 2010 solar event: Observations and transport modeling. J Geophys Res (Space Phys) 119(8): 6074–6094. https://doi.org/10.1002/2014JA019933. [NASA ADS] [CrossRef] [Google Scholar]
- Effenberger F, Rubio da Costa F, Oka M, Saint-Hilaire P, Liu W, Petrosian V, Glesener L, Krucker S. 2017. Hard X-ray emission from partially occulted solar flares: RHESSI observations in two solar cycles. Astrophys J 835(2): 124. https://doi.org/10.3847/1538-4357/835/2/124. [CrossRef] [Google Scholar]
- Gaizauskas V. 1982. The relation of solar flares to the evolution and proper motions of magnetic fields. Adv Space Res 2(11): 11–30. https://doi.org/10.1016/0273-1177(82)90175-2. [CrossRef] [Google Scholar]
- Garcia HA. 1994. Temperature and emission measure from Goes Soft X-ray measurements. Sol. Phys. 154(2): 275–308. https://doi.org/10.1007/BF00681100. [NASA ADS] [CrossRef] [Google Scholar]
- Halford AJ, Kellerman AC, Garcia-Sage K, Klenzing J, Carter BA, et al. 2019. Application usability levels: a framework for tracking project product progress. J Space Weather Space Clim 9: A34. https://doi.org/10.1051/swsc/2019030. [CrossRef] [Google Scholar]
- Hunter JD. 2007. Matplotlib: A 2D graphics environment. Comput Sci Eng 9(3): 90–95. https://doi.org/10.1109/MCSE.2007.55. [Google Scholar]
- Kahler SW, Ling AG. 2018a. Forecasting solar energetic particle (SEP) events with flare X-ray peak ratios. J Space Weather Space Clim 8: A47. https://doi.org/10.1051/swsc/2018033. [CrossRef] [Google Scholar]
- Kahler SW, Ling AG. 2018b. Relating solar energetic particle event fluences to peak intensities. Sol Phys 293(2): 30. https://doi.org/10.1007/s11207-018-1249-x. [CrossRef] [Google Scholar]
- Klein K-L, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212(3–4): 1107–1136. https://doi.org/10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
- Krucker S, Hurford GJ, Grimm O, Kögl S, Gröbelbauer HP, et al. 2020. The spectrometer/telescope for imaging X-rays (STIX). A&A 642: A15. https://doi.org/10.1051/0004-6361/201937362. [CrossRef] [EDP Sciences] [Google Scholar]
- Krucker S, Kontar EP, Christe S, Lin RP. 2007. Solar flare electron spectra at the Sun and near the Earth. Astrophys J Lett 663(2): L109–L112. https://doi.org/10.1086/519373. [NASA ADS] [CrossRef] [Google Scholar]
- Laurenza M, Alberti T, Cliver EW. 2018. A short-term ESPERTA-based forecast tool for moderate-to-extreme solar proton events. Astrophys J 857(2): 107. https://doi.org/10.3847/1538-4357/aab712. [CrossRef] [Google Scholar]
- Laurenza M, Cliver EW, Hewitt J, Storini M, Ling AG, Balch CC, Kaiser ML. 2009. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7(4): S04008. https://doi.org/10.1029/2007SW000379. [NASA ADS] [CrossRef] [Google Scholar]
- Li P, Emslie AG, Mariska JT. 1993. Implications of the soft X-ray versus hard X-ray temporal relationship in solar flares. Astrophys J 417: 313. https://doi.org/10.1086/173314. [NASA ADS] [CrossRef] [Google Scholar]
- Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, et al. 2002. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol Phys 210(1): 3–32. https://doi.org/10.1023/A:1022428818870. [NASA ADS] [CrossRef] [Google Scholar]
- Liu W, Liu S, Jiang YW, Petrosian V. 2006. RHESSI observation of chromospheric evaporation. Astrophys J 649(2): 1124–1139. https://doi.org/10.1086/506268. [NASA ADS] [CrossRef] [Google Scholar]
- Marsh MS, Dalla S, Dierckxsens M, Laitinen T, Crosby NB. 2015. SPARX: A modeling system for solar energetic particle radiation space weather forecasting. Space Weather 13(6): 386–394. https://doi.org/10.1002/2014SW001120. [NASA ADS] [CrossRef] [Google Scholar]
- Neupert WM. 1968. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys J Lett 153: L59. https://doi.org/10.1086/180220. [Google Scholar]
- Ning Z, Cao W. 2010. Investigation of chromospheric evaporation in a Neupert-type solar flare. Astrophys J 717(2): 1232–1242. https://doi.org/10.1088/0004-637X/717/2/1232. [CrossRef] [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E > 10 MeV). Space Weather 9(7): 07003. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 13(11): 807–819. https://doi.org/10.1002/2015SW001256. [CrossRef] [Google Scholar]
- Pacheco D. 2019. Analysis and modelling of the solar energetic particle radiation environment in the inner heliosphere in preparation for solar orbiter, Ph.D. Thesis, Dep. Física Quàtica i Astrofsica, Universitat de Barcelona, Barcelona, Spain. URL http://hdl.handle.net/10803/667033. [Google Scholar]
- Pacheco D, Agueda N, Aran A, Heber B, Lario D. 2019. Full inversion of solar relativistic electron events measured by the Helios spacecraft. A&A 624: A3. https://doi.org/10.1051/0004-6361/201834520. [CrossRef] [EDP Sciences] [Google Scholar]
- Pacheco D, Agueda N, Gómez-Herrero R, Aran A. 2017. Interplanetary transport of solar near-relativistic electrons on 2014 August 1 over a narrow range of heliolongitudes. J Space Weather Space Clim 7(27): A30. https://doi.org/10.1051/swsc/2017029. [CrossRef] [EDP Sciences] [Google Scholar]
- Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, Jiggens P, Hilgers A. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. https://doi.org/10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5(5): 05001. https://doi.org/10.1029/2006SW000268. [NASA ADS] [CrossRef] [Google Scholar]
- Posner A, Strauss RD. 2020. Warning time analysis From SEP simulations of a two-tier REleASE system applied to Mars exploration. Space Weather 18(4): e02354. https://doi.org/10.1029/2019SW002354. [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175(1–4): 53–92. https://doi.org/10.1007/s11214-013-9958-9. [Google Scholar]
- Reid GC. 1964. A diffusive model for the initial phase of a solar proton event. J Geophys Res 69(13): 2659–2667. https://doi.org/10.1029/JZ069i013p02659. [NASA ADS] [CrossRef] [Google Scholar]
- Richardson IG, Mays ML, Thompson BJ. 2018. Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena. Space Weather 16(11): 1862–1881. https://doi.org/10.1029/2018SW002032. [CrossRef] [Google Scholar]
- Richardson IG, von Rosenvinge TT, Cane HV, Christian ER, Cohen CMS, Labrador AW, Leske RA, Mewaldt RA, Wiedenbeck ME, Stone EC. 2014. >25 MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ~ seven years of the STEREO mission. Sol Phys 289(8): 3059–3107. https://doi.org/10.1007/s11207-014-0524-8. [NASA ADS] [CrossRef] [Google Scholar]
- St. Cyr OC, Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15(1): 240–257. https://doi.org/10.1002/2016SW001545. [CrossRef] [Google Scholar]
- Strauss RD, Dresing N, Engelbrecht NE. 2017. Perpendicular diffusion of solar energetic particles: Model results and implications for electrons. Astrophys J 837(1): 43. https://doi.org/10.3847/1538-4357/aa5df5. [NASA ADS] [CrossRef] [Google Scholar]
- Strauss RD, Fichtner H. 2015. On aspects pertaining to the perpendicular diffusion of solar energetic particles. Astrophys J 801(1): 29. https://doi.org/10.1088/0004-637X/801/1/29. [NASA ADS] [CrossRef] [Google Scholar]
- Tylka AJ, Cohen CMS, Dietrich WF, Krucker S, McGuire RE, Mewaldt RA, Ng CK, Reames DV, Share GH. 2003. Onsets and release times in solar particle events. In: International Cosmic Ray Conference, Vol. 6 of International Cosmic Ray Conference, 3305. [Google Scholar]
- Veronig A, Vršnak B, Dennis BR, Temmer M, Hanslmeier A, Magdalenić J. 2002. Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. A&A 392: 699–712. https://doi.org/10.1051/0004-6361:20020947. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Veronig AM, Brown JC, Dennis BR, Schwartz RA, Sui L, Tolbert AK. 2005. Physics of the Neupert effect: Estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys J 621(1): 482–497. https://doi.org/10.1086/427274. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.