Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2020083 | |
Published online | 02 February 2021 |
- Breed AM, Goodwin GL, Vandenberg AM, Essex EA, Lynn KJW, Silby JH. 1997. Ionospheric total electron content and slab thickness determined in Australia. Radio Sci 32(4): 1635–1643. [CrossRef] [Google Scholar]
- Chen CH, Huba JD, Saito A, Lin CH, Liu JY. 2011. Theoretical study of the ionospheric Weddell Sea Anomaly using SAMI2. J Geophys Res 116: A04305. https://doi.org/10.1029/2010JA015573. [Google Scholar]
- Davies K, Fritz RB, Gray TB. 1976. Measurements of columnar electron contents of the ionosphere and plasmasphere. J Geophys Res 81: 2825–2834. https://doi.org/10.1029/JA081i016p02825. [CrossRef] [Google Scholar]
- Duarte-Silva MH, Muella MTAH, Silva LCC, de Abreu AJ, Fagundes PR. 2015. Ionospheric slab thickness at the equatorial anomaly region after the deep solar minimum of cycle 23/24. Adv Space Res 56(9): 1961–1972. https://doi.org/10.1016/j.asr.2015.05.010. [CrossRef] [Google Scholar]
- Fang TW, Fuller-Rowell T, Yudin V, Matsuo T, Viereck R. 2018. Quantifying the sources of ionosphere day-to-day variability. J Geophys Res: Space Phys 123: 9682–9696. https://doi.org/10.1029/2018JA02552. [CrossRef] [Google Scholar]
- Förster M, Jakowski N. 1986. Interhemispheric ionospheric coupling at the American sector during low solar activity. II. Modelling. Gerl. Beitr Geophys 95(4): 301–314. [Google Scholar]
- Förster M, Jakowski N. 1988. The nighttime winter anomaly (NWA) effect in the American sector as a consequence of interhemispheric coupling. PAGEOPH 127: 447–471. https://doi.org/10.1007/BF00879821. [CrossRef] [Google Scholar]
- Forbes JM, Palo SE, Zhang X. 2000. Variability of the ionosphere. J Atmos Sol-Terr Phys 62(8): 685–693. https://doi.org/10.1016/S1364-6826(00)00029-8. [CrossRef] [Google Scholar]
- Fox MW, Mendillo M, Klobuchar JA. 1991. Ionospheric equivalent slab thickness and its modeling applications. Radio Sci 26(2): 429–438. https://doi.org/10.1029/90RS02624. [CrossRef] [Google Scholar]
- Gerzen T, Jakowski N, Wilken V, Hoque MM. 2013. Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps. Ann Geophys 31: 1241–1249. https://doi.org/10.5194/angeo-31-1241-2013. [CrossRef] [Google Scholar]
- Hajj GA, Romans LJ. 1998. Ionospheric electron density profiles obtained with the global positioning system: Results from the GPS/MET experiment. Radio Sci 33(1): 175–190. https://doi.org/0.1029/97RS03183. [CrossRef] [Google Scholar]
- He M, Liu L, Wan W, Ning B, Zhao B, Wen J, Yue X, Le H. 2009. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J Geophys Res 114(A1): 2309. https://doi.org/10.1029/2009JA014175. [CrossRef] [Google Scholar]
- Hedin AE, Spencer NW, Biondi MA, Burnside RG, Hernandez G, et al. 1991. Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96(A5): 7657–7688. https://doi.org/10.1029/91JA00251. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2011. A new global empirical NmF2 model for operational use in radio systems. Radio Sci 46: RS6015. https://doi.org/10.1029/2011RS004807. [Google Scholar]
- Hoque MM, Jakowski N. 2012. A new global model for the ionospheric F2 peak height for radio wave propagation. Ann Geophys 30: 787–809. https://doi.org/10.5194/angeo-30-797-2012. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2013. Mitigation of ionospheric mapping function error. In: Proc. of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), September 2013, Nashville, TN, pp. 1848–1855. [Google Scholar]
- Hoque MM, Wenzel D, Jakowski N, Gerzen T, Berdermann J, Wilken V, Kriegel M, Sato H, Borries C, Minkwitz D. 2016. Ionospheric response over Europe during the solar eclipse of March 20, 2015. J Space Weather Space Clim 6: A36. https://doi.org/10.1051/swsc/2016032. [CrossRef] [Google Scholar]
- Horvath I, Essex EA. 2003. The Weddell Sea anomaly observed with the Topex satellite data. J Atmos Sol-Terr Phys 65: 693–706. https://doi.org/10.1016/S1364-6826(03)00083-X. [CrossRef] [Google Scholar]
- Huang Z, Yuan H. 2015. Climatology of the ionospheric slab thickness along the longitude of 120° E in China and its adjacent region during the solar minimum years of 2007–2009. Ann Geophys 33: 1311–1319. https://doi.org/10.5194/angeo-33-1311-2015. [CrossRef] [Google Scholar]
- Huang H, Liu L, Chen Y, Le H, Wan W. 2016. A global picture of ionospheric slab thickness derived from GIM TEC and COSMIC radio occultation observations. J Geophys Res Space Phys 121: 867–880. https://doi.org/10.1002/2015JA021964. [CrossRef] [Google Scholar]
- Jakowski N. 1981. A method for analysing ionospheric perturbations by combining ionospheric total electron content with foF2 data. Phys Solariterr Potsdam 15: 130–136. [Google Scholar]
- Jakowski N, Bettac HD, Lazo B, Lois L. 1981. Seasonal variations of the columnar electron content of the ionosphere observed in Havana from July 1974 to April 1975. J Atmos Sol-Terr Phys 43: 7–11. https://doi.org//10.1016/0021-9169 (81)90003-9. [CrossRef] [Google Scholar]
- Jakowski N, Kugland HG. 1982. Determining the electron content of the plasmasphere using coherent signals of ATS-6 satellite recorded at Neustrelitz. Kosmicheskiye Issledovaniya 6: 892–899. [Google Scholar]
- Jakowski N, Foerster M, Lazo B, Lois L. 1986. Interhemispheric ionospheric coupling at the American sector during low solar activity. I. Observation. Gerl. Beitr Geophys 95(9): 219–227. [Google Scholar]
- Jakowski N, Putz E, Spalla P. 1990a. Ionospheric storm characteristics deduced from satellite radio beacon observations at three European stations. Ann Geophys 8: 343–352. [Google Scholar]
- Jakowski N, Landrock R, Jungstand A. 1990b. The nighttime winter anomaly (NWA) effect at the Asian longitude sector. Gerl Beitr Geophys 99: 163–168. [Google Scholar]
- Jakowski N, Fichtelmann B, Jungstand A. 1991a. Solar activity control of ionospheric and thermospheric processes. J Atmos Terr Phys 53: 1125–1130. https://doi.org/10.1016/0021-9169(91)90061-B. [CrossRef] [Google Scholar]
- Jakowski N, Jungstand A, Lois L, Lazo B. 1991b. Night-time enhancements of the F2-layer ionization over Havana. J Atmos Terr Phys 53: 1131–1138. https://doi.org/10.1016/0021-9169(91)90062-C. [CrossRef] [Google Scholar]
- Jakowski N, Förster M. 1995. About the nature of the night-time winter anomaly effect (NWA) in the F-region of the ionosphere. Planet Space Sci 43: 603–612. https://doi.org/10.1016/0032-0633(94)00115-8. [CrossRef] [Google Scholar]
- Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan TK. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29, 10(10): 95–1–95–4. https://doi.org/10.1029/2001GL014364. [Google Scholar]
- Jakowski N. 2005. Ionospheric GPS radio occultation measurements on board CHAMP. GPS Solut 9: 88. https://doi.org/10.1007/s10291-005-0137-7. [CrossRef] [Google Scholar]
- Jakowski N, Stankov SM, Wilken V, Borries C, Altadill D, et al. 2008. Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005. J Atmos Sol-Terr Phys 70: 836–863. https://doi.org/10.1016/j.jastp.2007.02.016. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mayer C. 2011a. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geodesy 85: 965–974. https://doi.org/10.1007/s00190-011-0455-1. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Kriegel M, Patidar V. 2015. The persistence of the nighttime winter anomaly (NWA) effect during the low solar activity period 2007–2009. J Geophys Res 120(10): 9148–9160. https://doi.org/10.1002/2015JA021600. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mielich J, Hall C. 2017. Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term temperature changes in the thermosphere. J Atmos Sol-Terr Phys 163: 91–102. https://doi.org/10.1016/j.jastp.2017.04.008. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM. 2018. A new electron density model of the plasmasphere for operational applications and services. J Space Weather Space Clim 8: A16. https://doi.org/10.1051/swsc/2018002. [CrossRef] [Google Scholar]
- Jayachandran B, Krishnankutty TN, Gulyaeva TL. 2004. Climatology of ionospheric slab thickness. Ann Geophys 22: 25–33. https://doi.org/10.5194/angeo-22-25-2004. [CrossRef] [Google Scholar]
- Kersley L, Hosseinieh HH. 1976. Dependence of ionospheric slab thickness on geomagnetic activity. J Atmos Sol-Terr Phys 38: 1357–1360. https://doi.org/10.1016/0021-9169(76)90146-X. [CrossRef] [Google Scholar]
- Lei J, Liu L, Luan X, Wan W. 2003. Model study on neutral winds in the ionospheric F- region and comparison with the equivalent winds derived from the Wuhan ionosonde data. TAO 14(1): 1–12. https://doi.org/10.3319/TAO.2003.14.1.1(A). [Google Scholar]
- Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, et al. 2007. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J Geophys Res 112: A07308. https://doi.org/10.1029/2006JA012240. [Google Scholar]
- Lin CH, Liu CH, Liu JY, Chen CH, Burns AG, Wang W. 2010. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J Geophys Res 115: A03308. https://doi.org/10.1029/2009JA014084. [Google Scholar]
- Maltseva O, Mozhaeva N. 2016a. The use of the total electron content measured by navigation satellites to estimate ionospheric conditions. Int J Navig Obs 2016. https://doi.org/10.1155/2016/7016208. [Google Scholar]
- Maltseva O, Mozhaeva N. 2016b. Efficiency of the equivalent slab thickness of the ionosphere to set radio wave propagation conditions. In: Proc. of the Fifth International Conference on Telecommunications and Remote Sensing, Vol. 1, ICTRS, pp. 5–14. https://doi.org/10.5220/0006226600050014. [Google Scholar]
- McNamara LF, Smith DH. 1982. Total Electron content of the ionosphere at 31 S, 1967–1974. J Atmos Sol-Terr Phys 44(3): 221–239. https://doi.org/10.1016/0021-9169(82)90028-9. [Google Scholar]
- Miro G, Jakowski N, de la Morena BA. 1999. Equivalent slab thickness of the ionosphere in middle latitudes based on TEC/foF2 observations over EL Arenosillo. In: Proc. 3rd COST251 Workshop, September, 1998, Hanbaba R, de la Morena BA (Eds.), pp. 87–92. [Google Scholar]
- Muslim B, Haralambous H, Oikonomou C, Anggarani S. 2015. Evaluation of a global model of ionospheric slab thickness for foF2 estimation during geomagnetic storm. Ann Geophys 58(5): A0551. https://doi.org/10.4401/ag-6721. [Google Scholar]
- Natali MP, Meza A. 2013. The nighttime anomalies using Global IGS VTEC Maps. Adv Space Res 51(3): 377–387. https://doi.org/10.1016/j.asr.2012.09.031. [CrossRef] [Google Scholar]
- Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol-Terr Phys 63: 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0. [CrossRef] [Google Scholar]
- Rüster R. 1971. Solution of the coupled ionospheric continuity equation and the equations of motion for the ions, electrons and neutral particles. J Atmos Sol-Terr Phys 33: 137–14. [CrossRef] [Google Scholar]
- Schaer S, Gurtner W, Feltens J. 1998. IONEX: The IONosphere Map EXchange Format Version 1. In: Proc. of the IGS, AC Workshop, February 9–11, 1998, Darmstadt, Germany. [Google Scholar]
- Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D. 2007. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34: L04808. https://doi.org/10.1029/2006GL027557. [CrossRef] [Google Scholar]
- Stankov SM, Jakowski N. 2006. Topside plasma scale height retrieved from radio occultation measurements. Adv Space Res 37: 958–962. https://doi.org/10.1016/j.asr.2005.12.009. [CrossRef] [Google Scholar]
- Su F, Lin J, Zhu F, Zhou Y, Yang J, Hu L. 2017. Seasonal features of topside scale height based on COSMIC measurements. Geod Geodyn 8(5): 328–334. https://doi.org/10.1016/j.geog.2017.06.003. [CrossRef] [Google Scholar]
- Thampi SV, Balan N, Lin C, Liu H, Yamamoto M. 2011. Mid-latitude summer nighttime anomaly (MSNA) – observations and model simulations. Ann Geophys 29: 157–165. https://doi.org/10.5194/angeo-29-157-2011. [CrossRef] [Google Scholar]
- Titheridge JE. 1973. The slab thickness of the mid-latitude ionosphere. Planet Space Sci 21(10): 1775–1793. https://doi.org/10.1016/0032-0633(73)90168-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.