Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 41 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2021026 | |
Published online | 13 August 2021 |
- Araki T. 1977. Global structure of geomagnetic sudden commencements. Planet Space Sci 25(4): 373–384. https://doi.org/10.1016/0032-0633(77)90053-8. [Google Scholar]
- Baker DN, Peterson WK, Eriksson S, Li X, Blake JB, et al. 2002. Timing of magnetic reconnection initiation during a global magnetospheric substorm onset. Geophys Res Lett 29(24): 43–1–43–4. https://doi.org/10.1029/2002GL015539. [Google Scholar]
- Baumann C, McCloskey AE. 2020. Measurements of the solar wind propagation delay for L1 to Earth based on ACE and ground-based magnetometer data. https://doi.org/10.5281/zenodo.4300253. [Google Scholar]
- Biau G, Scornet E. 2016. A random forest guided tour. TEST 25(2): 197–227. https://doi.org/10.1007/s11749-016-0481-7. [CrossRef] [Google Scholar]
- Borovsky JE. 2018. The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. J Atmos Sol-Terr Phys 177: 2–11. Dynamics of the Sun-Earth system: Recent observations and predictions. https://doi.org/10.1016/j.jastp.2017.03.014. [Google Scholar]
- Breiman L. 2001. Random Forests. Mach Learn 45(1): 5–32. https://doi.org/10.1023/a:1010933404324. [Google Scholar]
- Cameron T, Jackel B. 2016. Quantitative evaluation of solar wind time-shifting methods. Space Weather 14(11): 973–981. https://doi.org/10.1002/2016sw001451. [CrossRef] [Google Scholar]
- Cameron TG, Jackel B. 2019. Using a numerical MHD model to improve solar wind time shifting. Space Weather 17(5): 662–671. https://doi.org/10.1029/2019sw002175. [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Cash MD, Hicks SW, Biesecker DA, Reinard AA, de Koning CA, Weimer DR. 2016. Validation of an operational product to determine L1 to Earth propagation time delays. Space Weather 14(2): 93–112. https://doi.org/10.1002/2015sw001321. [Google Scholar]
- Colburn DS, Sonett CP. 1966. Discontinuities in the solar wind. Space Sci Rev 5: 439–506. https://doi.org/10.1007/BF00240575. [NASA ADS] [CrossRef] [Google Scholar]
- Curto JJ, Araki T, Alberca LF. 2007. Evolution of the concept of sudden storm commencements and their operative identification. Earth Planets Space 59(11): i–xii. https://doi.org/10.1186/bf03352059. [CrossRef] [Google Scholar]
- Engebretson MJ, Murr DL, Hughes WJ, Lühr H, Moretto T, et al. 1999. A multipoint determination of the propagation velocity of a sudden commencement across the polar ionosphere. J Geophys Res: Space Phys 104(A10): 22433–22451. https://doi.org/10.1029/1999ja900237. [Google Scholar]
- Friedman JH. 2001. Greedy function appoximation: A gradient boosting machine. Ann Stat 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451. [Google Scholar]
- Gjerloev JW. 2012. The SuperMAG data processing technique. J Geophys Res: Space Phys 117(A9): A09213. https://doi.org/10.1029/2012JA017683. [Google Scholar]
- Gosling JT, Asbridge JR, Bame SJ, Hundhausen AJ, Strong IB. 1967. Discontinuities in the solar wind associated with sudden geomagnetic impulses and storm commencements. J Geophys Res 72(13): 3357–3363. https://doi.org/10.1029/jz072i013p03357. [Google Scholar]
- Haaland S, Munteanu C, Mailyan B. 2010. Solar wind propagation delay: Comment on “Minimum variance analysis-based propagation of the solar wind observations: Application to real-time global magnetohydrodynamic simulations” by A. Pulkkinen and L. Raststätter. Space Weather 8(6): n/a–n/a. https://doi.org/10.1029/2009sw000542. [CrossRef] [Google Scholar]
- Haiducek JD, Welling DT, Ganushkina NY, Morley SK, Ozturk DS. 2017. SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather 15(12): 1567–1587. https://doi.org/10.1002/2017SW001695. [CrossRef] [Google Scholar]
- Hapfelmeier A, Ulm K. 2013. A new variable selection approach using Random Forests. Comput Stat Data Anal 60: 50–69. https://doi.org/10.1016/j.csda.2012.09.020. [Google Scholar]
- Head T, Kumar M, Nahrstaedt H, Louppe G, Shcherbatyi I. 2020. scikit-optimize/scikit-optimize. https://doi.org/10.5281/zenodo.4014775. [Google Scholar]
- Horbury TS, Burgess D, Fränz M, Owen CJ. 2001. Three spacecraft observations of solar wind discontinuities. Geophys Res Lett 28(4): 677–680. https://doi.org/10.1029/2000gl000121. [Google Scholar]
- Jian L, Russell CT, Luhmann JG, Skoug RM. 2006. Properties of interplanetary coronal mass ejections at One AU during 1995–2004. Sol Phys 239(1–2): 393–436. https://doi.org/10.1007/s11207-006-0133-2. [Google Scholar]
- Kömle NI, Lichtenegger HIM, Rucker HO. 1986. The Sun and the Heliosphere in three dimensions. In: Chap. Propagation of solar wind features: A model comparison using voyager data, Astrophysics and Space Science Library. https://doi.org/10.1007/978-94-009-4612-5_26. [Google Scholar]
- Liu J, Ye Y, Shen C, Wang Y, Erdélyi R. 2018. A new tool for CME arrival time prediction using machine learning algorithms: CAT-PUMA. Astrophys J 855(2): 109. https://doi.org/10.3847/1538-4357/aaae69. [CrossRef] [Google Scholar]
- Love JJ, Chulliat A. 2013. An international network of magnetic observatories. Eos, Trans Am Geophys Union 94(42): 373–374. https://doi.org/10.1002/2013EO420001. [Google Scholar]
- Lundberg SM, Lee S-I. 2017. A unified approach to interpreting model predictions. In: Advances in neural information processing systems, Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (Eds.), Vol. 30, Curran Associates Inc., pp. 4765–4774. [Google Scholar]
- Mailyan B, Munteanu C, Haaland S. 2008. What is the best method to calculate the solar wind propagation delay? Ann Geophys 26(8): 2383–2394. https://doi.org/10.5194/angeo-26-2383-2008. [CrossRef] [Google Scholar]
- McComas DJ, Bame SJ, Barker P, Feldman WC, Phillipsa JL, Riley P, Griffee JW. 1998. Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci Rev 86: 563–612. https://doi.org/10.1023/A:1005040232597. [Google Scholar]
- Oliveira DM, Raeder J. 2015. Impact angle control of interplanetary shock geoeffectiveness: A statistical study. J Geophys Res: Space Phys 120(6): 4313–4323. https://doi.org/10.1002/2015ja021147. [Google Scholar]
- Paschmann G, Daly PW. 1998. Analysis methods for multi-spacecraft data. ISSI Scientific Reports Series SR-001, ESA/ISSI, Vol. 1. ISBN 1608-280X, 1998, ISSI Scientific Reports Series, Vol. 1. [Google Scholar]
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. 2011. Scikit-learn: Machine learning in Python. J Mach Learn Res 12: 2825–2830. [Google Scholar]
- Pulkkinen A, Rastätter L. 2009. Minimum variance analysis-based propagation of the solar wind observations: Application to real-time global magnetohydrodynamic simulations. Space Weather 7(12): n/a–n/a. https://doi.org/10.1029/2009sw000468. [CrossRef] [Google Scholar]
- Ridley AJ. 2000. Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes. J Atmos Sol-Terr Phys 62(9): 757–771. https://doi.org/10.1016/s1364-6826(00)00057-2. [Google Scholar]
- Schwartz S.J. 1998. Analysis methods for multi-spacecraft data. In: Chap. Shock and discontinuity normals, machnumbers, and related parameters, ISSI Scientific Report, pp. 249–305. [Google Scholar]
- Segarra A, Nosé M, Curto JJ, Araki T. 2015. Multipoint observation of the response of the magnetosphere and ionosphere related to the sudden impulse event on 19 November 2007. J Space Weather Space Clim 5: A13. https://doi.org/10.1051/swsc/2015016. [Google Scholar]
- Shapley LS. 1953. A value for n-person games. Contrib Theory Games 2(28): 307–317. [Google Scholar]
- Sibeck DG, Lopez RE, Roelof EC. 1991. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res 96(A4): 5489. https://doi.org/10.1029/90ja02464. [CrossRef] [Google Scholar]
- Smith AW, Rae IJ, Forsyth C, Oliveira DM, Freeman MP, Jackson DR. 2020. Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning. Space Weather 18(11): e2020SW002603. https://doi.org/10.1029/2020sw002603. [Google Scholar]
- Smith CW, L’Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The Ace magnetic fields experiment, Springer, Netherlands, Dordrecht, pp. 613–632. ISBN 978-94-011-4762-0. https://doi.org/10.1007/978-94-011-4762-0_21. [Google Scholar]
- Sonnerup BUO, Cahill LJ. 1967. Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res 72(1): 171. https://doi.org/10.1029/jz072i001p00171. [Google Scholar]
- Stansby D, Rai Y, Broll J, Shaw S, Aditya. 2019. heliopython/heliopy: HelioPy 0.15.4. https://doi.org/10.5281/zenodo.509051 [Google Scholar]
- Stone E, Frandsen A, Mewaldt R, Christian E, Margolies D, Ormes J, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86(1/4): 1–22. https://doi.org/10.1023/a:1005082526237. [NASA ADS] [CrossRef] [Google Scholar]
- Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. 2007. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform 8: 25. [Google Scholar]
- Swersky K, Snoek J, Adams RP. 2013. Multi-task Bayesian optimization. In: Advances in neural information processing systems, Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (Eds.), Vol. 26, Curran Associates Inc., pp. 2004–2012. [Google Scholar]
- Viñas AF, Scudder JD. 1986. Fast and optimal solution to the “Rankine-Hugoniot problem”. J Geophys Res: Space Phys 91(A1): 39–58. https://doi.org/10.1029/JA091iA01p00039. [Google Scholar]
- Weimer DR, King JH. 2008. Improved calculations of interplanetary magnetic field phase front angles and propagation time delays. J Geophys Res: Space Phys 113(A1): A01105. https://doi.org/10.1029/2007ja012452. [Google Scholar]
- Weimer DR, Ober DM, Maynard NC, Collier MR, McComas DJ, Ness NF, Smith CW, Watermann J. 2003. Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. J Geophys Res: Space Phys 108(A1): 1026. https://doi.org/10.1029/2002JA009405. [Google Scholar]
- Wu C, Fry CD, Berdichevsky D, Dryer M, Smith Z, Detman T. 2005. Predicting the arrival time of shock passages at Earth. Sol Phys 227: 371–386. https://doi.org/10.1007/s11207-005-1213-4. [Google Scholar]
- Yang Y, Shen F, Yang Z, Feng X. 2018. Prediction of solar wind speed at 1 AU using an artificial neural network. Space Weather 16(9): 1227–1244. https://doi.org/10.1029/2018sw001955. [Google Scholar]
- Zhang Y, Haghani A. 2015. A gradient boosting method to improve travel time prediction. Transport ResPart C: Emerg Technol 58: 308–324. https://doi.org/10.1016/j.trc.2015.02.019. [Google Scholar]
- Zhelavskaya IS, Vasile R, Shprits YY, Stolle C, Matzka J. 2019. Systematic analysis of machine learning and feature selection techniques for prediction of the Kp index. Space Weather 17(10): 1461–1486. https://doi.org/10.1029/2019sw002271. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.