Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
Topical Issue - 10 years of JSWSC
|
|
---|---|---|
Article Number | 42 | |
Number of page(s) | 55 | |
Section | Agora | |
DOI | https://doi.org/10.1051/swsc/2021020 | |
Published online | 13 August 2021 |
- Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org, URL http://tensorflow.org/. [Google Scholar]
- Abbett WP, Fisher GH. 2003. A coupled model for the emergence of active region magnetic flux into the solar corona. Astrophys J 582: 475. https://doi.org/10.1086/344613. [Google Scholar]
- Abbett WP, Mikić Z, Linker JA, McTiernan JM, Magara T, Fisher G. 2004. The photospheric boundary of Sun-to-Earth coupled models. J Atmos Solar-Terr Phys 66: 1257–1270. https://doi.org/10.1016/j.jastp.2004.03.016. [Google Scholar]
- Alvarado-Gómez JD, Drake JJ, Garraffo C, Cohen O, Poppenhaeger K, Yadav RK, Moschou SP. 2020. An Earth-like stellar wind environment for proxima centauri c. Astrophys J 902(1): L9. https://doi.org/10.3847/2041-8213/abb885. [Google Scholar]
- Anderson BJ, Takahashi K, Toth BA. 2000. Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophys Res Lett 27(24): 4045–4048. https://doi.org/10.1029/2000GL000094. [Google Scholar]
- André N, Grande M, Achilleos N, Barthélémy M, Bouchemit M, et al. 2018. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure. Planet Space Sci 150: 50–59. https://doi.org/10.1016/j.pss.2017.04.020. [NASA ADS] [CrossRef] [Google Scholar]
- Angelopoulos V, Kennel CF, Coroniti FV, Pellat R, Kivelson MG, Walker RJ, Russell CT, Baumjohann W, Feldman WC, Gosling JT. 1994. Statistical characteristics of bursty bulk flow events. J Geophys Res 99(21): 257. https://doi.org/10.1029/94ja01263. [Google Scholar]
- Angelopoulos V, McFadden JP, Larson D, Carlson CW, Mende SB, et al. 2008. Tail reconnection triggering substorm onset. Science 321(5891): 931–935. https://doi.org/10.1126/science.1160495. [NASA ADS] [CrossRef] [Google Scholar]
- Antiochos SK, DeVore CR, Klimchuk JA. 1999. A model for solar coronal mass ejections. Astrophys J 510: 485–493. https://doi.org/10.1086/306563. [Google Scholar]
- Badavi FF, Nealy JE, Wilson JW. 2011. The Low Earth Orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements. Adv Space Res 48(8): 1441–1458. https://doi.org/10.1016/j.asr.2011.06.009. [Google Scholar]
- Baker D, Kanekal S. 2008. Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere. J Atmos Solar-Terr Phys 70(2–4): 195–206. https://doi.org/10.1016/j.jastp.2007.08.031. [Google Scholar]
- Baker DN, Balstad R, Bodeau JM, Cameron E, Fennell JF, et al. 2009. Severe Space Weather Events-Understanding Societal and Economic Impacts Workshop Report. National Academies Press, Washington, DC. ISBN 978-0-309-13811-6. https://doi.org/10.17226/12643. [Google Scholar]
- Baker DN, Pulkkinen TI, Angelopoulos V, Baumjohann W, McPherron RL. 1996. Neutral line model of substorms: Past results and present view. J Geophys Res 101(A6): 12975–13010. https://doi.org/10.1029/95JA03753. [Google Scholar]
- Barakat A, Schunk R. 2001. Effects of wave “particle interactions on the dynamic behavior of the generalized polar wind. J Atmos Solar-Terr Phys 63(1): 75–83. https://doi.org/10.1016/S1364-6826(00)00106-1. [Google Scholar]
- Barakat AR, Barghouthi IA. 1994. The effect of wave-particle interactions on the polar wind O+. Geophys Res Lett 21(21): 2279–2282. https://doi.org/10.1029/94gl01701. [Google Scholar]
- Bauske R, Nagy AF, Dezeeuw DL, Gombosi TI, Powell KG. 2000. 3D multiscale mass loaded MHD simulations of the solar wind interaction with Mars. Adv Space Res 26: 1571–1575. https://doi.org/10.1016/s0273-1177(00)00105-8. [Google Scholar]
- Bauske R, Nagy AF, Gombosi TI, De Zeeuw DL, Powell KG, Luhmann JG. 1998. A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange. J Geophys Res 103(A10): 23625–23638. https://doi.org/10.1029/98JA01791. [Google Scholar]
- Berger MJ, Colella P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1): 67–84. https://doi.org/10.1016/0021-9991(89)90035-1. [Google Scholar]
- Berger MJ, Jameson A. 1985. Automatic adaptive grid refinement for the Euler equations. AIAA J 23(4): 561–568. https://doi.org/10.2514/3.8951. [Google Scholar]
- Bhatnagar PL, Gross EP, Krook M. 1954. A model for collision processes in gases I. Phys Rev 94: 511–525. https://doi.org/10.1103/physrev.94.511. [Google Scholar]
- Bilitza D. 2001. International reference ionosphere 2000. Radio Sci 36(2): 261–275. https://doi.org/10.1029/2000RS002432. [CrossRef] [Google Scholar]
- Bolduc L. 2002. GIC observations and studies in the Hydro-Qubec power system. J Atmos Solar-Terr Phys 64(16): 1793–1802. https://doi.org/10.1016/S1364-6826(02)00128-1. [Google Scholar]
- Borovikov D, Sokolov IV, Manchester WB, Jin M, Gombosi TI. 2017a. Eruptive event generator based on the Gibson-Low magnetic configuration. J Geophys Res 122(8): 7979–7984. https://doi.org/10.1002/2017JA024304. [Google Scholar]
- Borovikov D, Sokolov IV, Roussev II, Taktakishvili A, Gombosi TI. 2018. Toward a quantitative model for simulation and forecast of solar energetic particle production during gradual events. I. Magnetohydrodynamic background coupled to the SEP Model. Astrophys J 864(1): 88. https://doi.org/10.3847/1538-4357/aad68d. [Google Scholar]
- Borovikov D, Tenishev V, Gombosi TI, Guidoni SE, DeVore CR, Karpen JT, Antiochos SK. 2017b. Electron Acceleration in Contracting Magnetic Islands during Solar Flares. Astrophys. J. 835(1): 48. https://doi.org/10.3847/1538-4357/835/1/48. [Google Scholar]
- Borovsky JE, Welling DT, Thomsen MF, Denton MH. 2014. Long-lived plasmaspheric drainage plumes: Where does the plasma come from? J Geophys Res 119(8): 6496–6520. https://doi.org/10.1002/2014JA020228. [Google Scholar]
- Brackbill JU, Forslund D. 1982. An implicit method for electromagnetic plasma simulation in two dimensions. J Comput Phys 46: 271–308. https://doi.org/10.1016/0021-9991(82)90016-X. [Google Scholar]
- Brackbill JU, Forslund DW. 1986. Simulation of low-frequency electromagnetic phenomena in plasmas. In: Multiple Time Scales. Brackbill JU, Cohen BI, (Eds.) Academic Press, New York, NY. pp. 271–310. [Google Scholar]
- Brackbill JU, Lapenta G. 2008. Magnetohydrodynamcis with implicit plasma simulation. Comm Comput Phys 4: 433–456. [Google Scholar]
- Brecht S, Lyon J, Fedder J, Hain K. 1981. A simulation study of East-West IMF effects on the magnetosphere. Geophys Res Lett 8: 397–400. https://doi.org/10.1029/GL008i004p00397. [Google Scholar]
- Brecht S, Lyon J, Fedder J, Hain K. 1982. A time-dependent three-dimensional simulation of the Earth’s magnetosphere: Reconnection events. J Geophys Res 87(A8): 6098–6108. https://doi.org/10.1029/ja087ia08p06098. [Google Scholar]
- Brillouin L. 1926. La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. Comptes Rendus de l’Acadmie des Sciences 183: 24–26. [Google Scholar]
- Burch JL, Torbert RB, Phan TD, Chen L-J, Moore TE, et al. 2016. Electron-scale measurements of magnetic reconnection in space. Science 352: 6290. https://doi.org/10.1126/science.aaf2939. [Google Scholar]
- Burgers JM. 1969. Flow equations for composite gases. Academic Press, New York. [Google Scholar]
- Buzulukova N, Fok M-C, Pulkkinen A, Kuznetsova M, Moore TE, Glocer A, Brandt PC, Toth G, Rastätter L. 2010. Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM-BATS-R-US coupled model. J Geophys Res 115(A05): 210. https://doi.org/10.1029/2009JA014621. [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in Space Weather: Nowcasting and forecasting. Space Weather 17: 1166–1207https://doi.org/10.1029/2018sw002061. [CrossRef] [Google Scholar]
- Carpenter D, Anderson RR. 1992. An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res 97(A2): 1097. https://doi.org/10.1029/91ja01548. [Google Scholar]
- Chapman S. 1916. On the Law of Distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas. Philos Trans Royal Soc A 216: 279–348. https://doi.org/10.1098/rsta.1916.0006. [Google Scholar]
- Chen MW, Lemon CL, Hecht J, Sazykin S, Wolf RA, Boyd A, Valek P. 2019a. Diffuse auroral electron and ion precipitation effects on RCM E comparisons with satellite data during the 17 March 2013 storm. J. Geophys. Res. 124(6): 4194–4216. https://doi.org/10.1029/2019JA026545. [Google Scholar]
- Chen Y, Manchester WB, Hero AO, Toth G, DuFumier B, Zhou T, Wang X, Zhu H, Sun Z, Gombosi TI. 2019b. Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters. Space Weather 17(10): 1404–1426. https://doi.org/10.1029/2019SW002214. [Google Scholar]
- Chen Y, Meng X-L, Wang X, van Dyk DA, Marshall HL, Kashyap VL. 2018. Calibration concordance for astronomical instruments via multiplicative shrinkage. J Am Stat Assoc 114: 1–34. https://doi.org/10.1080/01621459.2018.1528978. [Google Scholar]
- Chen Y, Toth G. 2019. Gauss’s law satisfying energy-conserving semi-implicit particle-in-cell method. J Comput Phys 386: 632–652. https://doi.org/10.1016/j.jcp.2019.02.032. [Google Scholar]
- Chen Y, Toth G, Cassak P, Jia X, Gombosi TI, Slavin JA, Markidis S, Peng IB, Jordanova VK, Henderson MG. 2017. Global three-dimensional simulation of Earth’s dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: initial results. J Geophys Res 122(10): 10318–10335. https://doi.org/10.1002/2017JA024186. [Google Scholar]
- Chen Y, Toth G, Gombosi TI. 2016. A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids. J Comput Phys 305: 604–621. https://doi.org/10.1016/j.jcp.2015.11.003. [Google Scholar]
- Chen Y, Tóth G, Hietala H, Vines SK, Zou Y, Nishimura Y, Silveira MVD, Guo Z, Lin Y, Markidis S. 2020. Magnetohydrodynamic with embedded particle-in-cell simulation of the geospace environment modeling dayside kinetic processes challenge event. Earth Space Sci 7(11): e2020EA001331. https://doi.org/10.1029/2020EA001331. [Google Scholar]
- Chen Y, Tóth G, Jia X, Slavin JA, Sun W, Markidis S, Gombosi TI, Raines JM. 2019c. Studying dawn-dusk asymmetries of Mercury’s magnetotail using MHD-EPIC simulations. J Geophys Res 124(11): 8954–8973. https://doi.org/10.1029/2019JA026840. [Google Scholar]
- Chew GF, Goldberger ML, Low FE. 1956. The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc R Soc Lond A 236(1204): 112–118. https://doi.org/10.1098/rspa.1956.0116. [Google Scholar]
- Clarke DA. 2010. On the Reliability of ZEUS-3D. Astrophys J Suppl 187(1): 119–134. https://doi.org/10.1088/0067-0049/187/1/119. [Google Scholar]
- Cohen O, Drake JJ, Kashyap VL, Sokolov IV, Gombosi TI. 2010. The impact of hot Jupiters on the spin-down of their host stars. Astrophys J Lett 723(1): L64–L67. https://doi.org/10.1088/2041-8205/723/1/L64. [Google Scholar]
- Cohen O, Garraffo C, Moschou S-P, Drake JJ, Alvarado-Gómez JD, Glocer A, Fraschetti F. 2020. The space environment and atmospheric Joule heating of the habitable zone exoplanet TOI700d. Astrophys J 897(1): 101. https://doi.org/10.3847/1538-4357/ab9637. [Google Scholar]
- Cohen O, Ma Y, Drake JJ, Glocer A, Garraffo C, Bell JM, Gombosi TI. 2015. The interaction of Venus-like, M-dwarf planets with the stellar wind of their host star. Astrophys J 806(1): 41. https://doi.org/10.1088/0004-637X/806/1/41. [Google Scholar]
- Cohen O, Sokolov IV, Roussev II, Arge CN, Manchester WB, et al. 2007. A semiempirical magnetohydrodynamical model of the solar wind. Astrophys J Lett 654: L163–L166. https://doi.org/10.1086/511154. [Google Scholar]
- Combi MR, Kabin K, Gombosi T, De Zeeuw D, Powell K. 1998. Io’s plasma environment during the Galileo flyby: Global three-dimensional MHD modeling with adaptive mesh refinement. J Geophys Res 103(A5): 9071–9081. https://doi.org/10.1029/98JA00073. [Google Scholar]
- Cranmer SR, Van Ballegooijen AA. 2010. Can the solar wind be driven by magnetic reconnection in the Sun’s magnetic carpet? Astrophys J 720(1): 824–847. https://doi.org/10.1088/0004-637X/720/1/824. [Google Scholar]
- Cravens T, Waite J, Gombosi T, Lugaz N, Gladstone G, Mauk B, MacDowall R. 2003. Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. J Geophys Res 108: 1465. https://doi.org/10.1029/2003JA010050. [Google Scholar]
- Crew GB, Chang T, Retterer JM, Peterson WK, Gurnett DA, Huff RL. 1990. Ion cyclotron resonance heated conics: Theory and observations. J Geophys Res 95(A4): 3959–3985. https://doi.org/10.1029/JA095iA04p03959. [Google Scholar]
- Daldorff LK, Toth G, Gombosi TI, Lapenta G, Amaya J, Markidis S, Brackbill JU. 2014. Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model. J Comput Phys 268: 236–254. https://doi.org/10.1016/j.jcp.2014.03.009. [NASA ADS] [CrossRef] [Google Scholar]
- De Zeeuw DL, Sazykin S, Wolf RA, Gombosi TI, Ridley AJ, Toth G. 2004. Coupling of a global MHD code and an inner magnetospheric model: Initial results. J Geophys Res 109(A12): A12219. https://doi.org/10.1029/2003ja010366. [Google Scholar]
- Dere K, Landi E, Mason H, Monsignori-Fossi B, Young P. 1997. CHIANTI - an atomic database for emission lines. Astron Astrophys Suppl Ser 125(1): 149–173. https://doi.org/10.1051/aas:1997368. [Google Scholar]
- Dere KP, Del Zanna G, Young PR, Landi E, Sutherland RS. 2019. CHIANTI – An atomic database for emission lines. XV. Version 9, Improvements for the X-Ray Satellite Lines. Astrophys J Suppl 241(2): 22. https://doi.org/10.3847/1538-4365/ab05cf. [Google Scholar]
- Downs C, Roussev II, van der Holst B, Lugaz N, Sokolov IV, Gombosi TI. 2010. Toward a realistic thermodynamic magnetohydrodynamic model of the global solar corona. Astrophys J 712(2): 1219–1231. https://doi.org/10.1088/0004-637X/712/2/1219. [Google Scholar]
- Dudley RJ, Duchene N. 2010. Microsoft Azure: Enterprise Application Development. Packt Publishing, Birmingham, UK. ISBN 1849680981. [Google Scholar]
- Engel MA, Morley SK, Henderson MG, Jordanova VK, Woodroffe JR, Mahfuz R. 2019. Improved Simulations of The Inner Magnetosphere During High Geomagnetic Activity With the RAM SCB Model. J. Geophys. Res. 124(6): 4233–4248. https://doi.org/10.1029/2018JA026260. [Google Scholar]
- Enskog D. 1917. Kinetische Theorie der Vorgänge in mässig verdünnten Gasen. Ph.D. thesis, University of Uppsala, Sweden. Also published in Kungliga Suenska vetenskapsakademiens handlingar, 63(4), 1922. [Google Scholar]
- Fang F, Manchester WB IV, Abbett WP, van der Holst B. 2012a. Buildup of magnetic shear and free energy during flux emergence and cancellation. Astrophys J 754: 15. https://doi.org/10.1088/0004-637X/754/1/15. [Google Scholar]
- Fang F, Manchester WB IV, Abbett WP, van der Holst B. 2012b. Dynamic coupling of convective flows and magnetic field during flux emergence. Astrophys J 745: 37. https://doi.org/10.1088/0004-637X/745/1/37. [Google Scholar]
- FEMA. 2019. 2019 National Threat and Hazard Identification and Risk Assessment (THIRA). Tech. Rep. FEMA-2019-508c. Federal Emergency Management Administration, Washington, DC. [Google Scholar]
- Feng X, Xiang C, Zhong D, Zhou Y, Yang L, Ma X. 2014a. SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes. Comput Phys Commun 185(7): 1965–1980. https://doi.org/10.1016/j.cpc.2014.03.027. [Google Scholar]
- Feng X, Zhang M, Zhou Y. 2014b. A new three-dimensional solar wind model in spherical coordinates with a six-component grid. Astrophys J Suppl 214(1): 6. https://doi.org/10.1088/0067-0049/214/1/6. [Google Scholar]
- Fok M-C, Buzulukova NY, Chen S-H, Glocer A, Nagai T, Valek P, Perez JD. 2014. The Comprehensive Inner Magnetosphere-Ionosphere Model. J Geophys Res 119(9): 7522–7540. https://doi.org/10.1002/2014JA020239. [Google Scholar]
- Fok M-C, Kang S-B, Ferradas CP, Buzulukova NB, Glocer A, Komar CM. 2021. New Developments in the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) Model. J Geophys Res 126: e2020JA028987. https://doi.org/10.1029/2020JA028987. [Google Scholar]
- Fok M-C, Kozyra JU, Nagy AF, Rasmussen CE, Khazanov GV. 1993. A decay model of equatorial ring current and the associated aeronomical consequences. J Geophys Res 98(19): 381. [Google Scholar]
- Fok MH, Horne RE, Meredith NP, Glauert SA. 2008. Radiation Belt Environment model: Application to space weather nowcasting. J Geophys Res 113: A03S08. https://doi.org/10.1029/2007JA012558. [Google Scholar]
- Fränz M, Harper D. 2002. Heliospheric coordinate systems. Planet Space Sci 50: 217–233. https://doi.org/10.1016/S0032-0633(01)00119-2. [Google Scholar]
- Gibson S, Low BC. 1998. A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys J 493: 460–473. https://doi.org/10.1086/305107. [Google Scholar]
- Glocer A, Fok M, Meng X, Toth G, Buzulukova N, Chen S, Lin K. 2013. CRCM + BATS-R-US two-way coupling. J Geophys Res 118(4): 1635–1650. https://doi.org/10.1002/jgra.50221. [Google Scholar]
- Glocer A, Gombosi TI, Toth G, Hansen KC, Ridley AJ, Nagy A. 2007. The Polar Wind Outflow Model: Saturn Results. J Geophys Res 112(A01): 304. https://doi.org/10.1029/2006JA011755. [Google Scholar]
- Glocer A, Khazanov G, Liemohn M. 2017. Photoelectrons in the quiet polar wind. J Geophys Res 122(6): 6708–6726. https://doi.org/10.1002/2017JA024177. [Google Scholar]
- Glocer A, Kitamura N, Toth G, Gombosi T. 2012. Modeling solar zenith angle effects on the polar wind. J Geophys Res 117: https://doi.org/10.1029/2011JA017136. [Google Scholar]
- Glocer A, Rastätter L, Kuznetsova M, Pulkkinen A, Singer HJ, et al. 2016. Community-wide validation of geospace model local K-index predictions to support model transition to operations. Space Weather 14(7): 469–480. https://doi.org/10.1002/2016SW001387. [CrossRef] [Google Scholar]
- Glocer A, Toth G, Fok M, Gombosi T, Liemohn M. 2009a. Integration of the radiation belt environment model into the space weather modeling framework. J Atmos Solar-Terr Phys 71(16): 1653–1663. https://doi.org/10.1016/j.jastp.2009.01.003. [Google Scholar]
- Glocer A, Toth G, Fok M-C. 2018. Including Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution. J Geophys Res 123(4): 2851–2871. https://doi.org/10.1002/2018JA025241. [Google Scholar]
- Glocer A, Toth G, Gombosi T, Welling D. 2009b. Modeling ionospheric outflows and their impact on the magnetosphere, initial results. J Geophys Res 114: A05216. https://doi.org/10.1029/2009JA014053. [Google Scholar]
- Glocer A, Tóth G, Ma Y, Gombosi T, Zhang J-C, Kistler LM. 2009c. Multifluid block-adaptive-tree solar wind Roe-type upwind scheme: Magnetospheric composition and dynamics during geomagnetic storms-Initial results. J Geophys Res 114(A12): A12203. https://doi.org/10.1029/2009ja014418. [Google Scholar]
- Glocer A, Welling D, Chappell CR, Toth G, Fok M-C, et al. 2020. A case study on the origin of near-Earth plasma. J Geophys Res 125(11): e2020JA028205. https://doi.org/10.1029/2020JA028205. [Google Scholar]
- Gloeckler G, Hamilton DC. 1987. AMPTE ion composition results. Phys Scripta T18: 73–84. https://doi.org/10.1088/0031-8949/1987/T18/009. [Google Scholar]
- Godunov SK. 1959. A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations. Mat Sb 47(3): 271–306 (in Russian). [Google Scholar]
- Gombosi T, De Zeeuw DL, Powell K, Ridley A, Sokolov I, Stout Q, Toth G. 2003. Adaptive mesh refinement MHD for global space weather simulations. In: Space Plasma Simulation, Vol. 615 in Lecture Notes in Physics. Büchner J, Dum CT, Scholer M, (Eds.) Springer, Berlin-Heidelberg-New York. pp. 251. https://doi.org/10.1007/3-540-27039-6_36. [Google Scholar]
- Gombosi T, Powell K, van Leer B. 2000. Comment on “Modeling the magnetosphere for northward IMF: Effects of electrical resistivity” by. J Raeder J Geophys Res 105(A6): 13141–13147. https://doi.org/10.1029/1999ja000342. [Google Scholar]
- Gombosi T, Rasmussen C. 1991. Transport of gyration-dominated space plasmas of thermal origin I – Generalized transport equations. J Geophys Res 96: 7759–7778. https://doi.org/10.1029/91JA00012. [Google Scholar]
- Gombosi TI. 1994. Gaskinetic Theory. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511524943. [Google Scholar]
- Gombosi TI. 1998. Physics of the space environment. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511529474. [Google Scholar]
- Gombosi TI. 2015. Physics of cometary magnetospheres. Geophys Monograph 207: 169–188. https://doi.org/10.1002/9781118842324.ch10. [Google Scholar]
- Gombosi TI, Baker DN, Balogh A, Erickson PJ, Huba JD, Lanzerotti LJ. 2017. Anthropogenic Space Weather. Space Sci Rev 1–55: https://doi.org/10.1007/s11214-017-0357-5. [Google Scholar]
- Gombosi TI, De Zeeuw DL, Häberli RM, Powell KG. 1996. Three-dimensional multiscale MHD model of cometary plasma environments. J Geophys Res 101: 15233–15252. https://doi.org/10.1029/96JA01075. [Google Scholar]
- Gombosi TI, Hansen KC. 2005. Saturn’s variable magnetosphere. Science 307: 1224–1226. https://doi.org/10.1126/science.1108226. [Google Scholar]
- Gombosi TI, Hansen KC, De Zeeuw DL, Combi MR, Powell KG. 1999. MHD simulation of comets: the plasma environment of comet Hale-Bopp. Earth Moon Planet. 79(1/3): 179–207. https://doi.org/10.1023/A:1006289418660. [Google Scholar]
- Gombosi TI, Ingersoll AP. 2010. Saturn: Atmosphere, ionosphere, and magnetosphere. Science 327(5972): 1476–1479. https://doi.org/10.1126/science.1179119. [Google Scholar]
- Gombosi TI, Nagy A. 1989. Time-dependent modeling of field aligned current-generated ion transients in the polar wind. J Geophys Res 94: 359–369. https://doi.org/10.1029/ja094ia01p00359. [Google Scholar]
- Gombosi TI, Toth G, De Zeeuw DL, Hansen KC, Kabin K, Powell KG. 2002. Semi-relativistic magnetohydrodynamics and physics-based convergence acceleration. J Comput Phys 177: 176–205. https://doi.org/10.1006/jcph.2002.7009. [Google Scholar]
- Gombosi TI, van der Holst B, Manchester WB, Sokolov IV. 2018. Extended MHD modeling of the steady solar corona and the solar wind. Liv Rev Sol Phys 15(1): 4. https://doi.org/10.1007/s41116-018-0014-4. [Google Scholar]
- Grad H. 1949. On the kinetic theory of rarefied gases. Commun Pure Appl Math 2: 331–407. https://doi.org/10.1002/cpa.3160020403. [Google Scholar]
- Häberli RM, Gombosi TI, De Zeuuw DL, Combi MR, Powell KG. 1997. Modeling of cometary X-rays caused by solar wind minor ions. Science 276: 939–942. https://doi.org/10.1126/science.276.5314.939. [NASA ADS] [CrossRef] [Google Scholar]
- Haiducek JD, Welling DT, Ganushkina NY, Morley SK, Ozturk DS. 2017. SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross-polar cap potential. Space Weather 15(12): 1567–1587. https://doi.org/10.1002/2017SW001695. [CrossRef] [Google Scholar]
- Haiducek JD, Welling DT, Morley SK, Ganushkina NY, Chu X. 2020. Using multiple signatures to improve accuracy of substorm identification. J Geophys Res 125(4): e2019JA027559. https://doi.org/10.1029/2019JA027559. [Google Scholar]
- Hansen KC, Bagdonat T, Motschmann U, Alexander C, Combi MR, Cravens TE, Gombosi TI, Jia Y, Robertson IP. 2007. The plasma environment of comet 67P/Churyumov-Gerasimenko throughout the Rosetta main mission. Space Sci Rev 128: 133–166. https://doi.org/10.1007/s11214-006-9142-6. [Google Scholar]
- Hansen KC, Gombosi TI, DeZeeuw DL, Groth CPT, Powell KG. 2000. A 3D Global MHD Simulation of Saturn’s Magnetosphere. Adv Space Res 26(10): 1681–1690. https://doi.org/10.1016/s0273-1177(00)00078-8. [Google Scholar]
- Hansen KC, Ridley AJ, Gombosi TI, Hospodarsky G. 2005. Global simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys Res Lett 32(20): L20S06. https://doi.org/10.1029/2005GL022835. [Google Scholar]
- Harel M, Wolf RA, Reiff PH, Spiro RW, Burke WJ, Rich FJ, Smiddy M. 1981. Quantitative simulation of a magnetospheric substorm 1, Model logic and overview. J Geophys Res 86: 2217–2241. https://doi.org/10.1029/ja086ia04p02217. [Google Scholar]
- Harris C, Jia X, Slavin J, Tóth G, Huang Z, Rubin M. 2021. Multi-fluid MHD simulations of Europas plasma interaction under different magnetospheric conditions. J Geophys Res e2020JA028888. https://doi.org/10.1029/2020JA028888. [Google Scholar]
- Hayashi K. 2013. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps. J Geophys Res 118: 6889–6906. https://doi.org/10.1002/2013JA018991. [Google Scholar]
- Hedin AE. 1987. MSIS-86 thermospheric model. J Geophys Res 92: 4649. https://doi.org/10.1029/ja092ia05p04649. [NASA ADS] [CrossRef] [Google Scholar]
- Hedin AE. 1991. Extension of the MSIS Thermosphere Model into the middle and lower atmosphere. J Geophys Res 96(A2): 1159–1172. https://doi.org/10.1029/90JA02125. [NASA ADS] [CrossRef] [Google Scholar]
- Heinemann M, Wolf RA. 2001. Relationships of models of the inner magnetosphere to the Rice Convection Model. J Geophys Res 106(A8): 15545–15554. https://doi.org/10.1029/2000ja000389. [Google Scholar]
- Herrero JL, Lucio F, Carmona P. 2011. Web services and web components. In: 2011 7th International Conference on Next Generation Web Services Practices. Salamanca, Spain. pp. 164–169. https://doi.org/10.1109/NWeSP.2011.6088171. [Google Scholar]
- Hill C, DeLuca C, Balaji V, Suarez M, da Silva A, the ESMF Joint Specification Team. 2004. The architecture of the Earth system modeling framework. Comput Sci Eng 6(1): 18–28. https://doi.org/10.1109/MCISE.2004.1255817. [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Hollweg JV. 1986. Transition region, corona, and solar wind in coronal holes. J Geophys Res 91: 4111–4125. https://doi.org/10.1029/JA091iA04p04111. [NASA ADS] [CrossRef] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci Rev 136: 67–115. https://doi.org/10.1007/s11214-008-9341-4. [Google Scholar]
- Huang Z, Toth G, Gombosi T, Bieler A, Combi M, et al. 2016a. A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov–Gerasimenko. MNRAS 462(1): S468–S475. https://doi.org/10.1093/mnras/stw3118 [Google Scholar]
- Huang Z, Toth G, Gombosi TI, Jia X, Rubin M, et al. 2016b. Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion. J Geophys Res 121(5): 4247–4268. https://doi.org/10.1002/2015JA022333. [Google Scholar]
- Huang Z, Toth G, van der Holst B, Chen Y, Gombosi TI. 2019. A six-moment multi-fluid plasma model. J Comput Phys 387: 134–153. https://doi.org/10.1016/j.jcp.2019.02.023. [Google Scholar]
- Ilie R, Liemohn MW, Toth G, Ganushkina NY, Daldorff LKS. 2015. Assessing the role of oxygen on ring current formation and evolution through numerical experiments. J Geophys Res 120(6): 4656–4668. https://doi.org/10.1002/2015ja021157. [Google Scholar]
- Ilie R, Liemohn MW, Toth G, Skoug RM. 2012. Kinetic model of the inner magnetosphere with arbitrary magnetic field. J Geophys Res 117(A4): A04208. https://doi.org/10.1029/2011JA017189. [Google Scholar]
- Ilie R, Skoug R, Funsten H, Liemohn M, Bailey J, Gruntman M. 2013. The impact of geocoronal density on ring current development. J Atmos Solar-Terr Phys 99: 92–103. https://doi.org/10.1016/j.jastp.2012.03.010. [Google Scholar]
- Illing RME, Hundhausen AJ. 1985. Observation of a coronal transient from 1.2 to 6 solar radii. J Geophys Res 90: 275–282. https://doi.org/10.1029/JA090iA01p00275. [Google Scholar]
- Jackson JD. 1975. Classical Eelectrodynamics. John Wiley and Sons, New York. [Google Scholar]
- Jacques SA. 1977. Momentum and energy transport by waves in the solar atmosphere and solar wind. Astrophys J 215: 942–951. https://doi.org/10.1086/155430. [Google Scholar]
- Janhunen P. 1996. GUMICS-3: A global ionosphere-magnetosphere coupling simulation with high ionospheric resolution. In: Guyenne T-D, Hilgers A, (Eds.). Proceedings of the ESA 1996 Symposium on Environment Modelling for Space-Based Applications, vol. 392 of ESA Special Publication, pp. 233–239. ESA SP-392. [Google Scholar]
- Jia X, Hansen KC, Gombosi TI, Kivelson MG, Toth G, DeZeeuw DL, Ridley AJ. 2012a. Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. J Geophys Res 117: A05225. https://doi.org/10.1029/2012JA017575. [Google Scholar]
- Jia X, Kivelson MG, Gombosi TI. 2012b. Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J Geophys Res 117: A04215. https://doi.org/10.1029/2011JA017367. [Google Scholar]
- Jia X, Kivelson MG, Khurana KK, Kurth WS. 2018. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nature Astron 2: 459–464. https://doi.org/10.1038/s41550-018-0450-z. [NASA ADS] [CrossRef] [Google Scholar]
- Jia X, Slavin JA, Gombosi TI, Daldorff LKS, Toth G, van der Holst B. 2015. Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J Geophys Res 120(6): 4763–4775. https://doi.org/10.1002/2015JA021143. [NASA ADS] [CrossRef] [Google Scholar]
- Jia X, Slavin JA, Poh G, DiBraccio GA, Toth G, Chen Y, Raines JM, Gombosi TI. 2019. MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. J Geophys Res 124(1): 229–247. https://doi.org/10.1029/2018JA026166. [CrossRef] [Google Scholar]
- Jia Y-D, Russell CT, Khurana KK, Ma YJ, Kurth W, Gombosi TI. 2010a. Interaction of Saturn’s magnetosphere and its moons: 3. Time variation of the Enceladus plume. J Geophys Res 115: A12243. https://doi.org/10.1029/2010JA015534. [Google Scholar]
- Jia Y-D, Russell CT, Khurana KK, Ma YJ, Najib D, Gombosi TI. 2010b. Interaction of Saturn’s magnetosphere and its moons: 2. Shape of the Enceladus plume. J Geophys Res 115: A04,215. https://doi.org/10.1029/2009JA014873. [Google Scholar]
- Jia Y-D, Russell CT, Khurana KK, Toth G, Leisner JS, Gombosi TI. 2010c. Interaction of Saturn’s magnetosphere and its moons: 1. Interaction between corotating plasma and standard obstacles. J Geophys Res 115: A04214. https://doi.org/10.1029/2009JA014630. [Google Scholar]
- Jiao Z, Sun H, Wang X, Manchester W, Gombosi T, Hero A, Chen Y. 2020. Solar flare intensity prediction with machine learning models. Space Weather 18(7): e2020SW002440. https://doi.org/10.1029/2020SW002440. [CrossRef] [Google Scholar]
- Jin M, Manchester WB, van der Holst B, Sokolov I, Toth G, Mullinix RE, Taktakishvili A, Chulaki A, Gombosi TI. 2017a. Data-constrained Coronal Mass Ejections in a Global Magnetohydrodynamics Model. Astrophys J 834(2): 173. https://doi.org/10.3847/1538-4357/834/2/173. [NASA ADS] [CrossRef] [Google Scholar]
- Jin M, Manchester WB, van der Holst B, Sokolov I, Toth G, Vourlidas A, de Koning CA, Gombosi TI. 2017b. Chromosphere to 1 AU Simulation of the 2011 March 7th Event: A Comprehensive Study of Coronal Mass Ejection Propagation. Astrophys J 834(2): 172. https://doi.org/10.3847/1538-4357/834/2/172. [NASA ADS] [CrossRef] [Google Scholar]
- Jin M, Petrosian V, Liu W, Nitta NV, Omodei N, et al. 2018. Probing the puzzle of behind-the-limb γ-ray flares: DATA-driven simulations of magnetic connectivity and CME-driven shock evolution. Astrophys J 867(2): 122. https://doi.org/10.3847/1538-4357/aae1fd. [CrossRef] [Google Scholar]
- Jordanova V, Delzanno G, Henderson M, Godinez H, Jeffery C, et al. 2018. Specification of the near-Earth space environment with SHIELDS. J Atmos Solar-Terr Phys 177: 148–159. https://doi.org/10.1016/j.jastp.2017.11.006. [CrossRef] [Google Scholar]
- Jordanova VK, Kozyra JU, Khazanov GV, Nagy AF, Rasmussen CE, Fok M-C. 1994. A bounce-averaged kinetic model of the ring current ion population. Geophys Res Lett 21: 2785–2788. https://doi.org/10.1029/94gl02695. [CrossRef] [Google Scholar]
- Jordanova VK, Miyoshi YS, Zaharia S, Thomsen MF, Reeves GD, Evans DS, Mouikis CG, Fennell JF. 2006. Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events. J Geophys Res 111(A11): A11S10. https://doi.org/10.1029/2006JA011644. [CrossRef] [Google Scholar]
- Jordanova VK, Zaharia S, Welling DT. 2010. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J Geophys Res 115(A12): A00J11. https://doi.org/10.1029/2010JA015671. [Google Scholar]
- Kabin K, Combi MR, Gombosi TI, De Zeeuw DL, Hansen KC, Powell KG. 2001. Io’s magnetospheric interaction: an MHD model with day-night asymmetry. Planet Space Sci 49: 337–344. https://doi.org/10.1016/S0032-0633(00)00155-0. [CrossRef] [Google Scholar]
- Kabin K, Combi MR, Gombosi TI, Nagy AF, De Zeeuw DL, Powell KG. 1999a. On Europa’s magnetospheric interaction: An MHD simulation of the E4 flyby. J Geophys Res 104(A9): 19983–19992. https://doi.org/10.1029/1999JA900263. [CrossRef] [Google Scholar]
- Kabin K, Gombosi TI, De Zeeuw DL, Powell KG. 2000a. Interaction of Mercury with the solar wind. Icarus 143: 397–406. https://doi.org/10.1006/icar.1999.6252. [NASA ADS] [CrossRef] [Google Scholar]
- Kabin K, Gombosi TI, De Zeeuw DL, Powell KG, Israelevich PL. 1999b. Interaction of the Saturnian magnetosphere with Titan: Results of a 3D MHD simulation. J Geophys Res 104(A2): 2451–2458. https://doi.org/10.1029/1998JA900080. [CrossRef] [Google Scholar]
- Kabin K, Heimpel MH, Rankin R, Aurnou JM, Gomez-Perez N, Paral J, Gombosi TI, Zurbuchen TH, Koehn PL, DeZeeuw DL. 2008. Global MHD modeling of Mercury’s magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus 195(1): 1–15. https://doi.org/10.1016/j.icarus.2007.11.028. [NASA ADS] [CrossRef] [Google Scholar]
- Kabin K, Israelevich PL, Ershkovich AI, Neubauer FM, Gombosi TI, De Zeeuw DL, Powell KG. 2000b. Titan’s magnetic wake: Atmospheric or magnetospheric interaction. J Geophys Res 105: 10761–10770. https://doi.org/10.1029/2000JA900012. [CrossRef] [Google Scholar]
- Keppens R, Teunissen J, Xia C, Porth O. 2021. MPI-AMRVAC: A parallel, grid-adaptive PDE toolkit. Comput Math Appl 81: 316–333. https://doi.org/10.1016/j.camwa.2020.03.023. [CrossRef] [Google Scholar]
- Khazanov G, Neubert T, Gefan G. 1994. A unified theory of ionosphere-plasmasphere transport of suprathermal electrons. IEEE Trans Plasma Sci 22(2): 187–198. https://doi.org/10.1109/27.279022. [CrossRef] [Google Scholar]
- Kóta J. 2000. Diffusion of energetic particles in focusing fields. J Geophys Res 105: 2403–2412. https://doi.org/10.1029/1999ja900469. [NASA ADS] [CrossRef] [Google Scholar]
- Kóta J, Manchester WB, Jokipii JR, de Zeeuw DL, Gombosi TI. 2005. Simulation of SEP Acceleration and Transport at CME-driven Shocks. In: AIP Conference Proceedings, Vol. 781, AIP, pp. 201–206. https://doi.org/10.1063/1.2032697. [CrossRef] [Google Scholar]
- Kramers HA. 1926. Wellenmechanik und halbzahlige Quantisierung. Zeitschrift für Physik 39(10): 828–840. https://doi.org/10.1007/BF01451751. [CrossRef] [Google Scholar]
- Kuznetsova MM, Hesse M, Rastaetter L, Taktakishvili A, Toth G, De Zeeuw DL, Ridley A, Gombosi TI. 2007. Multiscale modeling of magnetospheric reconnection. J Geophys Res 112(A10): A10210. https://doi.org/10.1029/2007JA012316. [CrossRef] [Google Scholar]
- Kuznetsova MM, Sibeck DG, Hesse M, Wang Y, Rastaetter L, Toth G, Ridley A. 2009. Cavities of weak magnetic field strength in the wake of FTEs: Results from global magnetospheric MHD simulations. Geophys Res Lett 36(10): L10104. https://doi.org/10.1029/2009GL037489. [CrossRef] [Google Scholar]
- Lapenta G. 2017. Exactly energy conserving semi-implicit particle in cell formulation. J Comput Phys 334: 349–366. https://doi.org/10.1016/j.jcp.2017.01.002. [CrossRef] [Google Scholar]
- Lapenta G, Brackbill JU, Ricci P. 2006. Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas. Phys. Plasmas 13(055): 904. https://doi.org/10.1063/1.2173623. [CrossRef] [Google Scholar]
- LeBoeuf JN, Tajima T, Kennel CF, Dawson JM. 1981. Global simulations of the three-dimensional magnetosphere. Geophys Res Lett 8: 257–260. https://doi.org/10.1029/gl008i003p00257. [CrossRef] [Google Scholar]
- Leka K, Barnes G. 2018. Solar flare forecasting: Present methods and challenges. In: Extreme Events in Geospace. Buzulukova N, (Ed.), Elsevier, Amsterdam, The Netherlands. pp. 65–98. https://doi.org/10.1016/B978-0-12-812700-1.00003-0. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275(1–2): 17–40. https://doi.org/10.1007/s11207-011-9776-8. [Google Scholar]
- Lennartsson W, Sharp RD, Shelley EG, Johnson RG, Balsiger H. 1981. Ion composition and energy distribution during 10 magnetic storms. J Geophys Res 86: 4628–4638. https://doi.org/10.1029/JA086iA06p04628. [CrossRef] [Google Scholar]
- Levermore C. 1996. Moment closure hierarchies for kinetic theories. J Stat Phys 83: 1021–1065. https://doi.org/10.1007/BF02179552. [CrossRef] [MathSciNet] [Google Scholar]
- Liemohn M, Ganushkina NY, De Zeeuw DL, Rastaetter L, Kuznetsova M, Welling DT, Toth G, Ilie R, Gombosi TI, van der Holst B. 2018. Real-time SWMF at CCMC: assessing the Dst output from continuous operational simulations. Space Weather 16(10): 1583–1603. https://doi.org/10.1029/2018SW001953. [CrossRef] [Google Scholar]
- Liemohn M, Ridley A, Gallagher D, Ober D, Kozyra J. 2004. Dependence of plasmaspheric morphology on the electric field description during the April 17, 2002 magnetic storm. J Geophys Res 109: A03209. https://doi.org/10.1029/2003JA010304. [Google Scholar]
- Liemohn MW. 2006. Introduction to special section on Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge. J Geophys Res 111: A11S01. https://doi.org/10.1029/2006JA011970. [Google Scholar]
- Liemohn MW, Jazowski M. 2008. Ring current simulations of the 90 intense storms during solar cycle 23. J Geophys Res 113: A00A17. https://doi.org/10.1029/2008JA013466. [CrossRef] [Google Scholar]
- Liemohn MW, Khazanov GV, Kozyra JU. 1998. Banded electron structure formation in the inner magnetosphere. Geophys Res Lett 25: 877–880. https://doi.org/10.1029/98gl00411. [CrossRef] [Google Scholar]
- Liemohn MW, Kozyra JU, Clauer CR, Khazanov GV, Thomsen MF. 2002. Adiabatic energization in the ring current and its relation to other source a nd loss terms. J Geophys Res 107(A4): https://doi.org/10.1029/2001JA000243. [Google Scholar]
- Liemohn MW, Kozyra JU, Jordanova VK, Khazanov GV, Thomsen MF, Cayton TE. 1999. Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys Res Lett 26(18): 2845–2848. https://doi.org/10.1029/1999gl900611. [CrossRef] [Google Scholar]
- Liemohn MW, Ridley AJ, Brandt PC, Gallagher DL, Kozyra JU, Ober DM, Mitchell DG, Roelof EC, DeMajistre R. 2005. Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. J Geophys Res 110: A12S22. https://doi.org/10.1029/2005JA011109. [CrossRef] [Google Scholar]
- Liemohn MW, Ridley AJ, Kozyra JU, Gallagher DL, Thomsen MF, Henderson MG, Denton MH, Brandt PC, Goldstein J. 2006. Analyzing electric field morphology through data-model comparisons of the GEM IM/S Assessment Challenge events. J Geophys Res 111: A11S11. https://doi.org/10.1029/2006JA011700. [Google Scholar]
- Lilensten J, Coates AJ, Dehant V, de Wit TD, Horne RB, Leblanc F, Luhmann J, Woodfield E, Barthélemy M. 2014. What characterizes planetary space weather? Astron Astrophys Rev 22(1): https://doi.org/10.1007/s00159-014-0079-6. [CrossRef] [Google Scholar]
- Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ. 1999. Magnetohydrodynamic modeling of the solar corona during whole Sun month. J Geophys Res 104: 9809–9830. https://doi.org/10.1029/1998ja900159. [NASA ADS] [CrossRef] [Google Scholar]
- Linker JA, Mikić Z, Schnack DD. 1994. Modeling coronal evolution. European Space Agency, Estes Park, CO. pp. 249–252. [Google Scholar]
- Lionello R, Linker JA, Mikič Z. 2009. Multispectral emission of the Sun during the first whole Sun month: Magnetohydrodynamic simulations. Astrophys J 690(1): 902–912. https://doi.org/10.1088/0004-637X/690/1/902. [NASA ADS] [CrossRef] [Google Scholar]
- Liu J, Ilie R. 2021. The effects of inductive electric field on the spatial and temporal evolution of inner magnetospheric ring current. J Geophys Res Space Phys 126: e2020JA028554. https://doi.org/10.1029/2020JA028554. [Google Scholar]
- Liu L, Zou S, Yao Y, Wang Z. 2020. Forecasting global ionospheric tec using deep learning approach. Space Weather 18(11): e2020SW002501. https://doi.org/10.1029/2020SW002501. [Google Scholar]
- Liu Y, Nagy A, Kabin K, Combi M, DeZeeuw D, Gombosi T, Powell K. 2000. Two-species, 3D, MHD simulation of Europa’s interaction with Jupiter’s magnetosphere. Geophys Res Lett 27(12): 1791–1794. https://doi.org/10.1029/1999GL003734. [CrossRef] [Google Scholar]
- Liu Y, Nagy AF, Groth CPT, De Zeeuw DL, Gombosi TI, Powell KG. 1999. 3D Multi-fluid MHD studies of the solar wind interaction with Mars. Geophys Res Lett 26(17): 2689–2692. https://doi.org/10.1029/1999GL900584. [CrossRef] [Google Scholar]
- Lugaz N, Manchester WB, Gombosi TI. 2005a. The evolution of CME density structures. Astrophys J 627: 1019–1030. https://doi.org/10.1086/430465. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Manchester WB, Gombosi TI. 2005b. Numerial Simulation of the Interaction of Two Coronal Mass Ejections from Sun to Earth. Astrophys J 634: 651–662. https://doi.org/10.1086/491782. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Manchester WB, Roussev II, Gombosi TI. 2008. Observational evidence of CMEs Interacting in the Inner Heliosphere as Inferred from MHD Simulations. J Atmos Solar-Terr Phys 70(2–4): 598–604. https://doi.org/10.1016/j.jastp.2007.08.033. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, Vourlidas A, Roussev II, Morgan H. 2009. Solar-Terrestrial Simulation in the STEREO Era: The 24–25 January 2007 Eruptions. Sol Phys 256: 269–284. https://doi.org/10.1007/s11207-009-9339-4. [CrossRef] [Google Scholar]
- Luhmann JG, Solomon SC, Linker JA, Lyon JG, Mikic Z, Odstrcil D, Wang W, Wiltberger M. 2004. Coupled model simulation of a Sun-to-Earth space weather event. J Atmos Solar-Terr Phys 66: 1243–1256. https://doi.org/10.1016/j.jastp.2004.04.005. [CrossRef] [Google Scholar]
- Lummerzheim D, Lilensten J. 1994. Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann Geophys 12(10/11): 1039–1051. https://doi.org/10.1007/s00585-994-1039-7. [NASA ADS] [CrossRef] [Google Scholar]
- Lundstedt H, Wintoft P. 1994. Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann Geophys 12(1): 19–24. https://doi.org/10.1007/s00585-994-0019-2. [CrossRef] [Google Scholar]
- Lyon JG, Fedder J, Huba J. 1986. The effect of different resistivity models on magnetotail dynamics. J Geophys Res 91(A7): 8057–8064. https://doi.org/10.1029/ja091ia07p08057. [CrossRef] [Google Scholar]
- Lyon JG, Fedder JA, Mobarry CM. 2004. The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code. J Atmos Solar-Terr Phys 66(15–16): 1333–1350. https://doi.org/10.1016/j.jastp.2004.03.020. [CrossRef] [Google Scholar]
- Ma Y, Nagy AF, Sokolov IV, Hansen KC. 2004. Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J Geophys Res 109: A07211. https://doi.org/10.1029/2003JA010367. [Google Scholar]
- Ma Y, Fang X, Halekas JS, Xu S, Russell CT, et al. 2018a. The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophys Res Lett 45(15): 7248–7256. https://doi.org/10.1029/2018GL077707. [CrossRef] [Google Scholar]
- Ma Y, Nagy AF, Hansen KC, De Zeeuw DL, Gombosi TI, Powell K. 2002. Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J Geophys Res 107(A10): 1282. https://doi.org/10.1029/2002JA009293. [CrossRef] [Google Scholar]
- Ma Y, Nagy AF, Russell C, Strangeway RJ, Wei HY, Toth G. 2013. A Global Multi-Species Single-Fluid MHD Study of the Plasma Interaction around Venus. J Geophys Res 118: 321. https://doi.org/10.1029/2012JA018265. [CrossRef] [Google Scholar]
- Ma Y, Russell CT, Toth G, Chen Y, Nagy AF, et al. 2018b. Reconnection in the Martian Magnetotail: Hall-MHD with embedded particle-in-cell simulations. J Geophys Res 123(5): 3742–3763. https://doi.org/10.1029/2017JA024729. [CrossRef] [Google Scholar]
- Ma Y-J, Nagy AF, Toth G, Cravens TE, Russell CT, et al. 2007. 3D global multi-species Hall-MHD simulation of the Cassini T9 flyby. Geophys Res Lett 34(24): L24S10. https://doi.org/10.1029/2007GL031627. [Google Scholar]
- Manchester W, Gombosi TI, De Zeeuw DL, Sokolov IV, Roussev II, Powell KG, Kóta J, Toth G, Zurbuchen TH. 2005. Coronal Mass Ejection shock and sheath structures relevant to particle acceleration. Astrophys J 622: 1225–1239. https://doi.org/10.1086/427768. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Gombosi TI, De Zeeuw DL, Fan Y. 2004a. Eruption of a Buoyantly Emerging Magnetic Flux Rope. Astrophys J 610: 588. https://doi.org/10.1086/421516. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Gombosi TI, Roussev II, Zeeuw DLD, Sokolov IV, Powell KG, Toth G, Opher M. 2004b. Three-dimensional MHD simulation of a flux-rope driven CME. J Geophys Res 109(A1): 1102–1119. https://doi.org/10.1029/2002JA009672. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Kozyra JU, Lepri ST, Lavraud B. 2014a. Simulation of magnetic cloud erosion during propagation. J Geophys Res 119: 1–16. https://doi.org/10.1002/2014JA019882. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Ridley AJ, Gombosi TI, De Zeeuw D. 2006. Modeling the Sun-Earth Propagation of a Very Fast CME. Adv Space Res 38(2): 253–262. https://doi.org/10.1016/j.asr.2005.09.044. [CrossRef] [Google Scholar]
- Manchester WB, van der Holst B. 2017. The interaction of coronal mass ejections with alfvénic Turbulence. In: Journal of Physics Conference Series. Vol. 900of Journal of Physics Conference Series, 012015. https://doi.org/10.1088/1742-6596/900/1/012015. [CrossRef] [Google Scholar]
- Manchester WB, van der Holst B, Lavraud B. 2014b. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event. Plasma Phys Controlled Fusion 56(6): 1–11. https://doi.org/10.1088/0741-3335/56/6/064006. [CrossRef] [Google Scholar]
- Manchester WB, van der Holst B, Toth G, Gombosi TI. 2012. The coupled evolution of electrons and ions in coronal mass ejection-driven shocks. Astrophys J 756(1):81. https://doi.org/10.1088/0004-637X/756/1/81. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB, Vourlidas A, Toth G, Lugaz N, Roussev II, Sokolov IV, Gombosi TI, Zeeuw DLD, Opher M. 2008. Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys J 684(2): 1448–1460. https://doi.org/10.1086/590231. [NASA ADS] [CrossRef] [Google Scholar]
- Markidis S, Lapenta G, Rizwan-Uddin. 2010. Multi-scale simulations of plasma with iPIC3D. Math Comput Simul 80(7): 1509–1519. https://doi.org/10.1016/j.matcom.2009.08.038. [CrossRef] [Google Scholar]
- Mayaud PN. 1980. Derivation, Meaning, and Use of Geomagnetic Indices. In: Vol. 22 of Geophysical Monograph Series, American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM022. [Google Scholar]
- Meng X, Toth G, Glocer A, Fok M-C, Gombosi TI. 2013. Pressure anisotropy in global magnetospheric simulations: Coupling with ring current models. J Geophys Res 118: 5639. https://doi.org/10.1002/jgra.50539. [CrossRef] [Google Scholar]
- Meng X, Toth G, Gombosi TI. 2012. Classical and semirelativistic magnetohydrodynamics with anisotropic ion pressure. J. Comput. Phys. 231: 3610–3622. https://doi.org/10.1016/j.jcp.2011.12.042. [CrossRef] [Google Scholar]
- Menvielle M, Iyemori T, Marchaudon A, Nosé M. 2010. Geomagnetic indices. Geomagnetic observations and models. Springer, Netherlands. pp. 183–228. https://doi.org/10.1007/978-90-481-9858-0_8. [Google Scholar]
- Merkin VG. 2011. Effects of ionospheric O + on the magnetopause boundary wave activity. AIP Conf Proc 1320: 208–212. https://doi.org/10.1063/1.3544326. [CrossRef] [Google Scholar]
- Mukhopadhyay A, Jia X, Welling D, Liemohn M. 2021. Global magnetohydrodynamic simulations: Performance quantification of magnetopause distances and convection potential prediction. Earth Space Sci Open Archive, pp. 1–22, in press, https://doi.org/10.3389/fspas.2021.637197. [Google Scholar]
- Mukhopadhyay A, Welling DT, Liemohn MW, Ridley AJ, Chakraborty S, Anderson BJ. 2020. Conductance model for extreme events: impact of auroral conductance on space weather forecasts. Space Weather 18(11): e2020SW002551. https://doi.org/10.1029/2020SW002551. [CrossRef] [Google Scholar]
- Nagy AF, Banks PM. 1970. Photoelectron fluxes in the ionosphere. J Geophys Res 75: 6260. [CrossRef] [Google Scholar]
- Nagy AF, Liu Y, Hansen KC, Kabin K, Gombosi T, Combi M, De Zeeuw DL, Powell KG, Kliore A. 2001. The interaction between the magnetosphere of Saturn and Titan’s ionosphere. J Geophys Res 106: 6151–6160. https://doi.org/10.1029/2000JA000183. [CrossRef] [Google Scholar]
- Nanbu K, Yonemura S. 1998. Weighted Particles in Coulomb Collision Simulations Based on the Theory of a Cumulative Scattering Angle. J Comput Phys 145(2): 639–654. https://doi.org/10.1006/jcph.1998.6049. [CrossRef] [Google Scholar]
- Ober DM, Horwitz JL, Gallagher DL. 1997. Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events. J Geophys Res 102(A7): 14595–14602. https://doi.org/10.1029/97JA01046. [CrossRef] [Google Scholar]
- Odstrčil D. 2003. Modeling 3-D solar wind structures. Adv Space Res 32(4): 497–506. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 2009. Numerical Heliospheric Simulations as Assisting Tool for Interpretation of Observations by STEREO Heliospheric Imagers. Sol Phys 259: 297–309. https://doi.org/10.1007/s11207-009-9449-z. [NASA ADS] [CrossRef] [Google Scholar]
- Ogino T. 1986. A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: The generation of field-aligned currents. J Geophys Res 91: 6791–6806. https://doi.org/10.1029/ja091ia06p06791. [CrossRef] [Google Scholar]
- Opher M, Bibi FA, Toth G, Richardson JD, Izmodenov VV, Gombosi TI. 2009. A strong, highly-tilted interstellar magnetic field near the Solar System. Nature 462: 1036–1038. https://doi.org/10.1038/nature08567. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Opher M, Drake J, Swisdak M, Zieger B, Toth G. 2017. The twist of the draped interstellar magnetic field ahead of the heliopause: Aa magnetic reconnection driven rotational discontinuity. Astrophys J Lett 839(1): L12. https://doi.org/10.3847/2041-8213/aa692f. [NASA ADS] [CrossRef] [Google Scholar]
- Opher M, Drake JF, Zieger B, Swisdak M, Toth G. 2016. Magnetized jets driven by the Sun: The structure of the heliosphere revisited – Updates. Phys Plasmas 23(5): 056501. https://doi.org/10.1063/1.4943526. [NASA ADS] [CrossRef] [Google Scholar]
- Opher M, Stone EC, Gombosi TI. 2007. The orientation of the local interstellar magnetic field. Science 316(5826): 875–878. https://doi.org/10.1126/science.1139480. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Oran R, van der Holst B, Landi E, Jin M, Sokolov IV, Gombosi TI. 2013. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. Astrophys J 778: 176–195. https://doi.org/10.1088/0004-637X/778/2/176. [NASA ADS] [CrossRef] [Google Scholar]
- Ozturk DS, Zou S, Ridley AJ, Slavin JA. 2018. Modeling study of the geospace system response to the solar wind dynamic pressure enhancement on 17 March 2015. J Geophys Res 123(4): 2974–2989. https://doi.org/10.1002/2017JA025099. [CrossRef] [Google Scholar]
- Parker EN. 1965. The passage of energetic charged particles through interplanetary space. Planet Space Sci 13: 9–49. https://doi.org/10.1016/0032-0633(65)90131-5. [NASA ADS] [CrossRef] [Google Scholar]
- Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. 2019. PyTorch: An imperative style, high-performance deep learning library. Adv Neural Inform Process Syst 8026–8037. [Google Scholar]
- Perlongo NJ, Ridley AJ, Liemohn MW, Katus RM. 2017. The effect of ring current electron scattering rates on magnetosphere-ionosphere coupling. J Geophys Res 122(4): 4168–4189. https://doi.org/10.1002/2016ja023679. [CrossRef] [Google Scholar]
- Pillet VM, Hill F, Hammel H, de Wijn AG, Gosain S, et al. 2019. Synoptic studies of the sun as a key to understanding stellar astrospheres. Bull AAS 51(3): Retrieved from https://baas.aas.org/pub/2020n3i110. [Google Scholar]
- Plainaki C, Lilensten J, Radioti A, Andriopoulou M, Milillo A, et al. 2016. Planetary space weather: Scientific aspects and future perspectives. J Space Weather Space Clim 6: A31. https://doi.org/10.1051/swsc/2016024. [CrossRef] [Google Scholar]
- Poedts S, Kochanov A, Lani A, Scolini C, Verbeke C, et al. 2020. The virtual space weather modelling centre. J Space Weather Space Clim 10: 14. https://doi.org/10.1051/swsc/2020012. [CrossRef] [Google Scholar]
- Poh G, Slavin JA, Jia X, Raines JM, Imber SM, Sun W-J, Gershman DJ, DiBraccio GA, Genestreti KJ, Smith AW. 2017. Mercury’s cross-tail current sheet: Structure, X-line location and stress balance. Geophys Res Lett 44(2): 678–686. https://doi.org/10.1002/2016GL071612. [NASA ADS] [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: EUropean Heliospheric FORecasting Information Asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [CrossRef] [Google Scholar]
- Powell K, Roe P, Linde T, Gombosi T, De Zeeuw DL. 1999. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154: 284–309. https://doi.org/10.1006/jcph.1999.6299. [NASA ADS] [CrossRef] [Google Scholar]
- Powell KG. 1997. An approximate Riemann solver for magnetohydrodynamics. Upwind and High-Resolution Schemes. Springer, Berlin Heidelberg. pp. 570–583. https://doi.org/10.1007/978-3-642-60543-7_23. [CrossRef] [Google Scholar]
- Pulkkinen A, Rastätter L, Kuznetsova M, Singer H, Balch C, et al. 2013. Community-wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather 11(6): 369–385. https://doi.org/10.1002/swe.20056. [CrossRef] [Google Scholar]
- Pulkkinen TI, Baker DN, Pellinen RJ, Büchner J, Koskinen HEJ, Lopez RE, Dyson RL, Frank LA. 1992. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase. J. Geophys. Res. 97(A12): 19283–19297. https://doi.org/10.1029/92JA01189. [CrossRef] [Google Scholar]
- Pulkkinen TI, Ganushkina NY, Tanskanen EI, Kubyshkina M, Reeves GD, Thomsen MF, Russell CT, Singer HJ, Slavin JA, Gjerloev J. 2006. Magnetospheric current systems during stormtime sawtooth events. J Geophys Res 111(A11): xxx. https://doi.org/10.1029/2006JA011627. [CrossRef] [Google Scholar]
- Qin G, Zhang M, Dwyer JR. 2006. Effect of adiabatic cooling on the fitted parallel mean free path of solar energetic particles. J Geophys Res 111(A8): A08101. https://doi.org/10.1029/2005JA011512. [Google Scholar]
- Raeder J. 2000. Reply. J Geophys Res 105: 13149–13153. [CrossRef] [Google Scholar]
- Raeder J, Berchem J, Ashour-Abdalla M. 1996. The importance of small scale processes in global MHD simulations: Some numerical experiments. In: The Physics of Space Plasmas. Vol. 14, Chang T, Jasperse JR, (Eds.) MIT Cent. for Theoret. Geo/Cosmo Plasma Phys, Cambridge, Mass. pp. 403. [Google Scholar]
- Raeder J, Walker RJ, Ashour-Abdalla M. 1995. The structure of the distant geomagnetic tail during long periods of northward IMF. Geophys Res Lett 22(4): 349–352. https://doi.org/10.1029/94gl03380. [CrossRef] [Google Scholar]
- Rasmussen C, Guiter SM, Thomas SG. 1993. Two-dimensional model of the plasmasphere: Refilling time constants. Planet Space Sci 41: 35. [CrossRef] [Google Scholar]
- Rastätter L, Kuznetsova MM, Glocer A, Welling D, Meng X, et al. 2013. Geospace environment modeling 2008–2009 challenge: Dst index. Space Weather 11(4): 187–205. https://doi.org/10.1002/swe.20036. [CrossRef] [Google Scholar]
- Rastätter L, Tóth G, Kuznetsova MM, Pulkkinen AA. 2014. CalcDeltaB: An efficient postprocessing tool to calculate ground-level magnetic perturbations from global magnetosphere simulations. Space Weather 12(9): 553–565. https://doi.org/10.1002/2014SW001083. [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90(3–4): 413–491. https://doi.org/10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Regoli LH, Dong C, Ma Y, Dubinin E, Manchester WB, Bougher SW, Welling DT. 2018. Multispecies and multifluid MHD approaches for the study of ionospheric escape at Mars. J Geophys Res 123(9): 7370–7383. https://doi.org/10.1029/2017JA025117. [CrossRef] [Google Scholar]
- Retterer JM, Chang T, Crew GB, Jasperse JR, Winningham JD. 1987. Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence. Phys. Rev. Lett 59(1): 148–151. https://doi.org/10.1103/PhysRevLett.59.148. [CrossRef] [Google Scholar]
- Ricci P, Lapenta G, Brackbill JU. 2002. GEM reconnection challenge: Implicit kinetic simulations with the physical mass ratio. Geophys Res Lett 29(23): 3–1–3–4. https://doi.org/10.1029/2002GL015314. [CrossRef] [Google Scholar]
- Ridley AJ, Deng Y, Toth G. 2006. The global ionosphere-thermosphere model. J Atmos Solar-Terr Phys 68(8): 839–864. https://doi.org/10.1016/j.jastp.2006.01.008. [NASA ADS] [CrossRef] [Google Scholar]
- Ridley AJ, Dodger AM, Liemohn MW. 2014. Exploring the efficacy of different electric field models in driving a model of the plasmasphere. J Geophys Res 119(6): 4621–4638. https://doi.org/10.1002/2014JA019836. [CrossRef] [Google Scholar]
- Ridley AJ, Gombosi TI, DeZeeuw DL. 2004. Ionospheric control of the magnetosphere: Conductance. Ann Geophys 22: 567–584. https://doi.org/10.5194/angeo-22-567-2004. [CrossRef] [Google Scholar]
- Roe PL. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43: 357–372. https://doi.org/10.1006/jcph.1997.5705. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Roe PL, Balsara DS. 1996. Notes on the eigensystem of magnetohydrodynamics. SIAM J Appl Math 56(1): 57–67. https://doi.org/10.1137/S003613999427084X. [CrossRef] [Google Scholar]
- Rostoker G. 1972. Geomagnetic indices. Rev Geophys 10(4): 935. https://doi.org/10.1029/RG010i004p00935. [CrossRef] [Google Scholar]
- Roussev II. 2008. Eruptive events in the solar atmosphere: new insights from theory and 3-D numerical modelling. J Contemp Phys 49(4): 237–254. https://doi.org/10.1080/00107510802366658. [CrossRef] [Google Scholar]
- Roussev II, Forbes TG, Gombosi TI, Sokolov IV, DeZeeuw DL, Birn J. 2003. A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium. Astrophys J Lett 588: L45–L48. https://doi.org/10.1086/375442. [NASA ADS] [CrossRef] [Google Scholar]
- Roussev II, Lugaz N, Sokolov IV. 2007. New physical insight on the changes in magnetic topology during coronal mass ejections: Case studies for the 2002 April 21 and August 24 Events. Astrophys J Lett 668: L87–L90. https://doi.org/10.1086/522588. [NASA ADS] [CrossRef] [Google Scholar]
- Roussev II, Sokolov IV. 2006. Models of solar eruptions: Recent advances from theory and simulations. Geophys Monograph 165: 89–102. https://doi.org/10.1029/165gm10. [Google Scholar]
- Roussev II, Sokolov IV, Forbes TG, Gombosi TI, Lee MA, Sakai JI. 2004. A numerical model of a coronal mass ejection: Shock development with implications for the acceleration of GeV protons. Astrophys J Lett 605: L73–L76. https://doi.org/10.1086/392504. [CrossRef] [Google Scholar]
- Rubin M, Hansen KC, Combi MR, Daldorff LKS, Gombosi TI, Tenishev VM. 2012. Kelvin-Helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumov-Gerasimenko. J Geophys Res 117(A06): 227. https://doi.org/10.1029/2011JA017300. [NASA ADS] [CrossRef] [Google Scholar]
- Rubin M, Jia X, Altwegg K, Combi MR, Daldorff LKS, et al. 2015. Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with Jupiter’s magnetosphere. J Geophys Res 120. https://doi.org/10.1002/2015JA021149. [Google Scholar]
- Sachdeva N, van der Holst B, Manchester WB, Tóth G, Chen Y, et al. 2019. Validation of the Alfvén Wave Solar Atmosphere Model (AWSoM) with Observations from the Low Corona to 1 au. Astrophys J 887(1): 83. https://doi.org/10.3847/1538-4357/ab4f5e. [NASA ADS] [CrossRef] [Google Scholar]
- Sarkango Y, Jia X, Toth G. 2019. Global MHD simulations of the response of Jupiter’s magnetosphere and ionosphere to changes in the solar wind and IMF. J Geophys Res 124: https://doi.org/10.1029/2019JA026787. [Google Scholar]
- Sazykin S, Wolf RA, Spiro RW, Gombosi TI, De Zeeuw DL, Thomsen MF. 2002. Interchange instability in the inner magnetosphere associated with geosynchronous particle flux decreases. Geophys Res Lett 29(10): 88-1–88-4. https://doi.org/10.1029/2001GL014416. [CrossRef] [Google Scholar]
- Schunk RW, Nagy AF. 1980. Ionospheres of the terrestrial planets. Rev Geophys Space Phys 18: 813–852. [NASA ADS] [CrossRef] [Google Scholar]
- Schunk RW, Nagy AF. 2009. Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/cbo9780511635342. [CrossRef] [Google Scholar]
- Shumlak U, Loverich J. 2003. Approximate Riemann solver for the two-fluid plasma model. J Comput Phys 187(2): 620–638. https://doi.org/10.1016/S0021-9991(03)00151-7. [CrossRef] [Google Scholar]
- Siscoe GL, Crooker NU, Erickson GM, Sonnerup BUÖ, Siebert KD, Weimer DR, White WW, Maynard NC. 2000. Global geometry of magnetospheric currents inferred from MHD Simulations. Geophys Monograph 118: 41–52. https://doi.org/10.1029/GM118p0041. [Google Scholar]
- Skilling J. 1971. Cosmic rays in the Galaxy: Convection or diffusion? Astrophys J 170: 265. [NASA ADS] [CrossRef] [Google Scholar]
- Slavin JA, Acuna MH, Anderson BJ, Baker DN, Benna M, et al. 2009. MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324(5927): 606–610. https://doi.org/10.1126/science.1172011. [NASA ADS] [CrossRef] [Google Scholar]
- Slavin JA, DiBraccio GA, Gershman DJ, Imber SM, Poh GK, et al. 2014. MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J Geophys Res 119(10): 8087–8116. https://doi.org/10.1002/2014JA020319. [NASA ADS] [CrossRef] [Google Scholar]
- Sokolov IV, Roussev II, Gombosi TI, Lee MA, Kóta J, Forbes TG, Manchester WB IV, Sakai JI. 2004. A new field line advection model for solar particle acceleration. Astrophys J Lett 616: L171–L174. https://doi.org/10.1086/426812. [NASA ADS] [CrossRef] [Google Scholar]
- Sokolov IV, van der Holst B, Manchester WB, Ozturk DCS, Szente J, Taktakishvili A, Tóth G, Jin M, Gombosi TI. 2021. Threaded-field-lines model for the low solar corona powered by the Alfvén wave turbulence. Astrophys J 908(1): 172–183. https://doi.org/10.3847/1538-4357/abc000. [CrossRef] [Google Scholar]
- Sokolov IV, van der Holst B, Oran R, Downs C, Roussev II, Jin M, Manchester WB, Evans RM, Gombosi TI. 2013. Magnetohydrodynamic waves and coronal heating: Unifying empirical and MHD Turbulence Models. Astrophys J 764: 23. https://doi.org/10.1088/0004-637X/764/1/23. [NASA ADS] [CrossRef] [Google Scholar]
- Solomon SC, Hays PB, Abreu VJ. 1988. The auroral 6300Å emission: Observations and modeling. J Geophys Res 93(A9): 9867. https://doi.org/10.1029/ja093ia09p09867. [CrossRef] [Google Scholar]
- Stout QF, Zeeuw DLD, Gombosi TI, Groth CPT, Marshall HG, Powell KG. 1997. Proceedings of the 1997 ACM/IEEE Conference on Supercomputing (CDROM) – Supercomputing ‘97. ACM Press. https://doi.org/10.1145/509593.509650. [Google Scholar]
- Sugiyama T, Kusano K. 2007. Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model. J Comput Phys 227(2): 1340–1352. https://doi.org/10.1016/j.jcp.2007.09.011. [CrossRef] [Google Scholar]
- Sun H, Hua Z, Ren J, Zou S, Sun Y, Chen Y. 2021. Matrix completion methods for the total electron content video reconstruction. Arxiv: http://arxiv.org/abs/2012.01618. [Google Scholar]
- Sun WJ, Fu SY, Slavin JA, Raines JM, Zong QG, Poh GK, Zurbuchen TH. 2016. Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. J Geophys Res 121(8): 7590–7607. https://doi.org/10.1002/2016JA022787. [CrossRef] [Google Scholar]
- Sun WJ, Slavin JA, Dewey RM, Chen Y, DiBraccio GA, Raines JM, Jasinski JM, Jia X, Akhavan-Tafti M. 2020. MESSENGER Observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection-generated structures and steady convection. J Geophys Res 125(3): e2019JA027490. https://doi.org/10.1029/2019JA027490. [Google Scholar]
- Szente J, Landi E, Manchester WB, Toth G, van der Holst B, Gombosi TI. 2019. SPECTRUM: Synthetic Spectral Calculations for Global Space Plasma Modeling. Astrophys J Suppl 242(1): 1. https://doi.org/10.3847/1538-4365/ab16d0. [CrossRef] [Google Scholar]
- Takizuka T, Abe H. 1977. A binary collision model for plasma simulation with a particle code. J Comput Phys 25(3): 205–219. https://doi.org/10.1016/0021-9991(77)90099-7. [CrossRef] [Google Scholar]
- Tenishev V, Borovikov D, Combi MR, Sokolov I, Gombosi T. 2018. Toward development of the energetic particle radiation nowcast model for assessing the radiation environment in the altitude range from that used by the commercial aviation in the troposphere to LEO, MEO, and GEO. In: 2018 Atmospheric and Space Environments Conference. AIAA. https://doi.org/10.2514/6.2018-3650 [Google Scholar]
- Tenishev V, Combi M, Davidsson B. 2008. A global kinetic model for cometary comae: The evolution of the coma of the Rosetta target comet Churyumov-Gerasimenko throughout the mission. Astrophys J 685(1): 659–677. https://doi.org/10.1086/590376. [NASA ADS] [CrossRef] [Google Scholar]
- Tenishev V, Combi M, Sokolov IV, Roussev II, Gombosi TI. 2005. Numerical studies of the solar energetic particle transport and acceleration, AIAA, Toronto, Ontario, Canada. https://doi.org/10.2514/6.2005-4928. [Google Scholar]
- Tenishev V, Combi MR, Rubin M. 2011. Numerical simulation of dust in a cometary coma: Application to comet 67P/Churyumov-Gerasimenko. Astrophys J 732(2): 104. https://doi.org/10.1088/0004-637x/732/2/104. [NASA ADS] [CrossRef] [Google Scholar]
- Tenishev V, Fougere N, Borovikov D, Combi MR, Bieler A, et al. 2016. Analysis of the dust jet imaged by Rosetta VIRTIS-M in the coma of comet 67P/Churyumov-Gerasimenko on April 12, 2015. Mon Not R Astron Soc 462(Suppl 1): S370–S375. https://doi.org/10.1093/mnras/stw2793. [CrossRef] [Google Scholar]
- Tenishev V, Shou Y, Borovikov D, Lee Y, Fougere N, Michael A, Combi MR. 2021. Application of the Monte Carlo method in modeling dusty gas, dust in plasma, and energetic ions in planetary, magnetospheric, and heliospheric environments. J Geophys Res 126(2): e2020JA028242. https://doi.org/10.1029/2020JA028242. [CrossRef] [Google Scholar]
- Titov VS, Démoulin P. 1999. Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys 351: 707–720. [Google Scholar]
- Toffoletto F, Sazykin S, Spiro R, Wolf R. 2003. Inner magnetospheric modeling with the Rice Convection Model. Space Sci Rev 107: 175–196. https://doi.org/10.1023/A:1025532008047. [CrossRef] [Google Scholar]
- Toth G. 1996. A general code for modeling MHD flows on parallel computers: Versatile advection code. Astroph Lett Comm 34: 245–250. [Google Scholar]
- Toth G. 2000. The ∇·B = 0 constraint in shock capturing magnetohydrodynamic codes. J Comput Phys 161(2): 605–652. https://doi.org/10.1006/jcph.2000.6519. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Toth G. 2006. Flexible, efficient and robust algorithm for parallel execution and coupling of components in a framework. Comput Phys Commun 174(10): 793–802. https://doi.org/10.1016/j.cpc.2005.12.017. [CrossRef] [Google Scholar]
- Toth G, Chen Y, Gombosi TI, Cassak P, Markidis S, Peng IB. 2017. Scaling the ion inertial length and its implications for modeling reconnection in global simulations. J Geophys Res 122(10): 10336–10355. https://doi.org/10.1002/2017JA024189. [CrossRef] [Google Scholar]
- Toth G, De Zeeuw DL, Gombosi TI, Manchester WB, Ridley AJ, Sokolov IV, Roussev II. 2007. Sun-to-thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework. Space Weather 5(6): S06003. https://doi.org/10.1029/2006SW000272. [CrossRef] [Google Scholar]
- Toth G, De Zeeuw DL, Gombosi TI, Powell KG. 2006. A parallel explicit/implicit time stepping scheme on block-adaptive grids. J Comput Phys 217: 722–758. https://doi.org/10.1016/j.jcp.2006.01.029. [NASA ADS] [CrossRef] [Google Scholar]
- Toth G, Jia X, Markidis S, Peng B, Chen Y, et al. 2016. Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede’s Magnetosphere. J Geophys Res 121(2): 1273–1293. https://doi.org/10.1002/2015JA021997. [CrossRef] [Google Scholar]
- Toth G, Keppens R, Botchev MA. 1998. Implicit and semi-implicit schemes in the Versatile Advection Code: Numerical tests. Astron Astrophys 332: 1159–1170. [Google Scholar]
- Toth G, Kovács D, Hansen KC, Gombosi TI. 2004. 3D MHD Simulations of the Magnetosphere of Uranus. J Geophys Res 109(A11): A11210. https://doi.org/10.1029/2004JA010406. [NASA ADS] [CrossRef] [Google Scholar]
- Toth G, Ma YJ, Gombosi TI. 2008. Hall magnetohydrodynamics on block adaptive grids. J Comput Phys 227: 6967–6984. https://doi.org/10.1016/j.jcp.2008.04.010. [NASA ADS] [CrossRef] [Google Scholar]
- Toth G, Meng X, Gombosi TI, Rastätter L. 2014. Predicting the time derivative of local magnetic perturbations. J Geophys Res 119. https://doi.org/10.1002/2013JA019456. [Google Scholar]
- Toth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res 110(A12): 12226–12237. https://doi.org/10.1029/2005JA011126. [NASA ADS] [CrossRef] [Google Scholar]
- Toth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, et al. 2012. Adaptive numerical algorithms in space weather modeling. J Comput Phys 231(3): 870–903. https://doi.org/10.1016/j.jcp.2011.02.006. [NASA ADS] [CrossRef] [Google Scholar]
- Tsyganenko NA. 1989. Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels. Planet Space Sci 35: 1347. [CrossRef] [Google Scholar]
- Tsyganenko NA. 1995. Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J Geophys Res 100: 5599–5612. [CrossRef] [Google Scholar]
- Tsyganenko NA. 2002a. A model of the near magnetosphere with a dawn-dusk asymmetry – 1. Mathematical Structure. J Geophys Res 107: SMP 12-1–SMP 12-15. https://doi.org/10.1029/2001JA000219. [CrossRef] [Google Scholar]
- Tsyganenko NA. 2002b. A model of the near magnetosphere with a dawn-dusk asymmetry – 2. Parameterization and fitting to observations. J Geophys Res 107: SMP 10-1–SMP 10-17. https://doi.org/10.1029/2001JA000220. [CrossRef] [Google Scholar]
- Tsyganenko NA, Sitnov MI. 2005. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res 110(A9): 3208. https://doi.org/10.1029/2004JA010798. [CrossRef] [Google Scholar]
- Tsyganenko NA, Stern D. 1996. Modeling the global magnetic field of the large-scale birkeland current systems. J Geophys Res 101(27): 187. [NASA ADS] [CrossRef] [Google Scholar]
- Usadi A, Kageyama A, Watanabe K, Sato T. 1993. A global simulation of the magnetosphere with a long tail: Southward and northward interplanetary magnetic field. J Geophys Res 98: 7503–7517. [NASA ADS] [CrossRef] [Google Scholar]
- Usmanov AV. 1993. A global numerical 3-D MHD model of the solar wind. Sol Phys 146: 377–396. https://doi.org/10.1007/BF00662021. [CrossRef] [Google Scholar]
- Usmanov AV, Goldstein ML, Besser BP, Fritzer JM. 2000. A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data. J Geophys Res 105: 12675–12695. https://doi.org/10.1029/1999JA000233. [NASA ADS] [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2008. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147: 187–231. https://doi.org/10.1007/s11214-009-9496-7. [NASA ADS] [CrossRef] [Google Scholar]
- van der Holst B, Jacobs C, Poedts S. 2007. Simulation of a Breakout Coronal Mass Ejection in the Solar Wind. Astrophys. J. 671(1): L77–L80. https://doi.org/10.1086/524732. [NASA ADS] [CrossRef] [Google Scholar]
- van der Holst B, Manchester W IV, Sokolov IV, Toth G, Gombosi TI, DeZeeuw D, Cohen O. 2009. Breakout coronal mass ejection or streamer blowout: The bugle effect. Astrophys J 693(2): 1178–1187. https://doi.org/10.1088/0004-637X/693/2/1178. [NASA ADS] [CrossRef] [Google Scholar]
- van der Holst B, Manchester WB, Frazin RA, Vásquez AM, Toth G, Gombosi TI. 2010. A data-driven, two-temperature solar wind model with Alfvén waves. Astrophys J 725(1): 1373–1383. https://doi.org/10.1088/0004-637X/725/1/1373. [NASA ADS] [CrossRef] [Google Scholar]
- van der Holst B, Sokolov IV, Meng X, Jin M, Manchester WB, Toth G, Gombosi TI. 2014. Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys J 782(2): 81. https://doi.org/10.1088/0004-637X/782/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- van Leer B. 1973. Towards the ultimate conservative difference scheme. I. The quest of monoticity, Vol. 18of Lecture Notes in Physics, Berlin Springer Verlag. pp. 163–168. [CrossRef] [Google Scholar]
- van Leer B. 1974. Towards the ultimate conservative difference scheme. II. Monoticity and conservation combined in a second-order scheme. J Comput Phys 14(4): 361–370. https://doi.org/10.1016/0021-9991(74)90019-9. [NASA ADS] [CrossRef] [Google Scholar]
- van Leer B. 1977a. Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow. J Comput Phys 23(3): 263–275. https://doi.org/10.1016/0021-9991(77)90094-8. [NASA ADS] [CrossRef] [Google Scholar]
- van Leer B. 1977b. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23(3): 276–299. https://doi.org/10.1016/0021-9991(77)90095-x. [NASA ADS] [CrossRef] [Google Scholar]
- van Leer B. 1979. Towards the ultimate conservative difference scheme. V. A second-order Sequel to Godunov’s method. J Comput Phys 32(1): 101–136. https://doi.org/10.1016/0021-9991(79)90145-1. [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Chen Y, Toth G, Manchester WB, Gombosi TI, Hero AO, Jiao Z, Sun H, Jin M, Liu Y. 2020. Predicting solar flares with machine learning: Investigating solar cycle dependence. Astrophys J 895(1): 3. https://doi.org/10.3847/1538-4357/ab89ac. [CrossRef] [Google Scholar]
- Wang Z, Zou S, Coppeans T, Ren J, Ridley A, Gombosi T. 2019. Segmentation of SED by boundary flows associated with westward drifting partial ring current. Geophys Res Lett 46(14): 7920–7928. [CrossRef] [Google Scholar]
- Washimi H, Tanaka T. 1996. 3-D Magnetic field and current system in the heliosphere. Space Sci Rev 78: 85–94. [NASA ADS] [CrossRef] [Google Scholar]
- Watanabe K, Sato T. 1990. Global simulation of the solar wind-magnetosphere interaction: The importance of its numerical validity. J Geophys Res 95: 75–88. [CrossRef] [Google Scholar]
- Weigel RS, Klimas AJ, Vassiliadis D. 2003. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. J Geophys Res 108(A7): 1298. https://doi.org/10.1029/2002JA009627. [CrossRef] [Google Scholar]
- Welling D. 2019. Magnetohydrodynamic models of B and their use in GIC estimates, American Geophysical Union (AGU). pp. 43–65. https://doi.org/10.1002/9781119434412.ch3. [Google Scholar]
- Welling D, Love J, Rigler EJ, Oliveira D, Komar C. 2020. Numerical simulations of the geospace response to the arrival of a perfect interplanetary coronal mass ejection. Earth Space Sci Open Archive 16. https://doi.org/10.1002/essoar.10502106.1. [Google Scholar]
- Welling DT, Jordanova VK, Glocer A, Toth G, Liemohn MW, Weimer DR. 2015. The two-way relationship between ionospheric outflow and the ring current. J Geophys Res 120(6): 4338–4353. https://doi.org/10.1002/2015JA021231. [Google Scholar]
- Welling DT, Jordanova VK, Zaharia SG, Glocer A, Toth G. 2011. The effects of dynamic ionospheric outflow on the ring current. J Geophys Res 116(A2): A00J19. https://doi.org/10.1029/2010JA015642. [Google Scholar]
- Welling DT, Toth G, Jordanova VK, Yu Y. 2018. Integration of RAM-SCB into the Space Weather Modeling Framework. J Atmos Solar-Terr Phys 177: 160–168. https://doi.org/10.1016/j.jastp.2018.01.007. [Google Scholar]
- Welling DT, Zaharia SG. 2012. Ionospheric outflow and cross polar cap potential: What is the role of magnetospheric inflation? Geophys Res Lett 39(L23): 101. https://doi.org/10.1029/2012GL054228. [Google Scholar]
- Wentzel G. 1926. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Zeitschrift für Physik 38(6): 518–529. https://doi.org/10.1007/BF01397171. [Google Scholar]
- White WW, Siscoe GL, Erickson GM, Kaymaz Z, Maynard NC, Siebert KD, Sonnerup BUÖ, Weimer DR. 1998. The magnetospheric sash and the cross-tail S. Geophys Res Lett 25(10): 1605–1608. [Google Scholar]
- Wiltberger M, Lotko W, Lyon JG, Damiano P, Merkin V. 2010. Influence of cusp O+ outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere. J Geophys Res 115: A00J05. https://doi.org/10.1029/2010JA015579. [Google Scholar]
- Winglee RM. 1998. Multi-fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF. Geophys Res Lett 25: 4441–4444. [Google Scholar]
- Winglee RM, Lewis W, Lu G. 2005. Mapping of the heavy ion outflows as seen by IMAGE and multifluid global modeling for the 17 April 2002 storm. J Geophys Res 110: A12S24. https://doi.org/10.1029/2004JA010909. [Google Scholar]
- Winslow RM, Anderson BJ, Johnson CL, Slavin JA, Korth H, Purucker ME, Baker DN, Solomon SC. 2013. Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. J Geophys Res 118(5): 2213–2227. https://doi.org/10.1002/jgra.50237. [Google Scholar]
- Wolf R. 1974. Calculations of magnetospheric electric fields. In: Magnetospheric Physics. McCormac BM (Ed.), D. Reidel Publishing, Hingham, MA. pp. 167–177. [Google Scholar]
- Wolf RA, Harel M, Spiro RW, Voigt G, Reiff PH, Chen CK. 1982. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. J Geophys Res 87: 5949–5962. https://doi.org/10.1029/JA087iA08p05949. [Google Scholar]
- Wolf RA, Spiro RW, Rich FJ. 1991. Extension of the Rice Convection Model into the high-latitude ionosphere. J Atmos Solar-Terr Phys 50: 817–829. [Google Scholar]
- Wu CC, Walker R, Dawson JM. 1981. A three-dimensional MHD model of the Earth’s magnetosphere. Geophys Res Lett 8: 523–526. https://doi.org/10.1029/GL008i005p00523. [Google Scholar]
- Yang J, Toffoletto FR, Wolf RA. 2014. RCM-E simulation of a thin arc preceded by a north-south-aligned auroral streamer. Geophys Res Lett 41(8): 2695–2701. https://doi.org/10.1002/2014GL059840. [Google Scholar]
- Yu Y, Cao J, Fu H, Lu H, Yao Z. 2017. The effects of bursty bulk flows on global-scale current systems. J Geophys Res 122(6): 6139–6149. https://doi.org/10.1002/2017JA024168. [Google Scholar]
- Yu Y, Jordanova V, Zou S, Heelis R, Ruohoniemi M, Wygant J. 2015. Modeling subauroral polarization streams during the 17 March 2013 storm. J Geophys Res 120(3): 1738–1750. [Google Scholar]
- Yu Y, Ridley AJ. 2008. Validation of the space weather modeling framework using ground-based magnetometers. Space Weather 6(S05): 002. https://doi.org/10.1029/2007SW000345. [Google Scholar]
- Yu Y, Ridley AJ, Welling DT, Toth G. 2010. Including gap region field-aligned currents and magnetospheric currents in the MHD calculation of ground-based magnetic field perturbations. J Geophys Res 115(A08): 207. https://doi.org/10.1029/2009JA014869. [Google Scholar]
- Zaharia S. 2008. Improved Euler potential method for three-dimensional magnetospheric equilibrium. J Geophys Res 113(A8). https://doi.org/10.1029/2008JA013325. [Google Scholar]
- Zaharia S, Cheng CZ, Maezawa K. 2004. 3-D Force-balanced magnetospheric configurations. Ann Geophys 22: 251–266. [Google Scholar]
- Zaharia S, Jordanova VK, Thomsen MF, Reeves GD. 2006. Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm. J Geophys Res 111(A11): A11S14. https://doi.org/10.1029/2006JA011619. [Google Scholar]
- Zaharia S, Jordanova VK, Welling DT, Toth G. 2010. Self-consistent inner magnetosphere simulation driven by a global MHD model. J Geophys Res 115(A12): 228. https://doi.org/10.1029/2010JA015915. [Google Scholar]
- Zaharia S, Thomsen MF, Birn J, Denton MH, Jordanova VK, Cheng CZ. 2005. Effect of storm-time plasma pressure on the magnetic field in the inner magnetosphere. Geophys Res Lett 32(L03): 102. [Google Scholar]
- Zhang B, Sorathia KA, Lyon JG, Merkin VG, Garretson JS, Wiltberger M. 2019a. GAMERA: A Three-dimensional Finite-volume MHD Solver for Non-orthogonal Curvilinear Geometries. Astrophys J Suppl 244(1): 20. https://doi.org/10.3847/1538-4365/ab3a4c. [Google Scholar]
- Zhang J, Liemohn MW, De Zeeuw DL, Borovsky JE, Ridley AJ, et al. 2007. Understanding storm-time ring current development through data-model comparisons of a moderate storm. J Geophys Res 112(A04): 208. https://doi.org/10.1029/2006JA011846. [Google Scholar]
- Zhang M, Qin G, Rassoul H. 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys J 692(1): 109–132. https://doi.org/10.1088/0004-637x/692/1/109. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang W, Almgren A, Beckner V, Bell J, Blaschke J, et al. 2019b. AMReX: A framework for block-structured adaptive mesh refinement. J Open Source Softw 4(37): 1370. https://doi.org/10.21105/joss.01370. [Google Scholar]
- Zhang W, Myers A, Gott K, Almgren A, Bell J. 2020. AMReX: Block-Structured Adaptive Mesh Refinement for Multiphysics Applications. http://arxiv.org/abs/2009.12009. [Google Scholar]
- Zhao L, Zhang M, Rassoul HK. 2016. Double power laws in the event-integrated solar energetic particle spectrum. Astrophys J 821(1): 62. https://doi.org/10.3847/0004-637x/821/1/62. [CrossRef] [Google Scholar]
- Zhao L, Zhang M, Rassoul HK. 2017. The effects of interplanetary transport in the event-intergrated solar energetic particle spectra. Astrophys J 836(1): 31. https://doi.org/10.3847/1538-4357/836/1/31. [Google Scholar]
- Zhou H, Tóth G. 2020. Efficient OpenMP parallelization to a complex MPI parallel magnetohydrodynamics code. J Parallel Distributed Comput 139: 65–74. https://doi.org/10.1016/j.jpdc.2020.02.004. [Google Scholar]
- Zhou H, Tóth G, Jia X, Chen Y. 2020. Reconnection-driven dynamics at Ganymede’s Upstream Magnetosphere: 3D Global Hall MHD and MHD-EPIC Simulations. J Geophys Res 125(8): e28162. https://doi.org/10.1029/2020JA028162. [Google Scholar]
- Zhou H, Tóth G, Jia X, Chen Y, Markidis S. 2019. Embedded kinetic simulation of Ganymede’s magnetosphere: Improvements and inferences. J Geophys Res 124: 5441–5460. https://doi.org/10.1029/2019JA026643. [Google Scholar]
- Zieger B, Hansen KC, Gombosi TI, De Zeeuw DL. 2010. Periodic plasma escape from the mass-loaded Kronian magnetosphere. J Geophys Res 115: A8: https://doi.org/10.1029/2009JA014951. [Google Scholar]
- Zou S, Ozturk D, Varney R, Reimer A. 2017. Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation. Geophys Res Lett 44(7): 3047–3058. https://doi.org/10.1002/2017GL072678. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.