Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 54 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2021035 | |
Published online | 26 October 2021 |
- Bowman BR, Kendra MJ, Marcos FA. 2004. A method for computing accurate daily atmospheric density values from satellite drag data. In: 14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, February 8–12, 2004. [Google Scholar]
- Bruinsma S. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim 5: A1. https://doi.org/10.1051/swsc/2015001. [CrossRef] [EDP Sciences] [Google Scholar]
- Bruinsma S, Biancale R. 2003. Total densities derived from accelerometer data. J Spacecr Rockets 40: 230–236. https://doi.org/10.2514/2.3937. [CrossRef] [Google Scholar]
- Bruinsma S, Forbes JM, Nerem RS, Zhang X. 2006. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J Geophys Res 111: A06303. https://doi.org/10.1029/2005JA011284. [Google Scholar]
- Calabia A, Jin S. 2016. New modes and mechanisms of thermospheric mass density variations from GRACE accelerometers. J Geophys Res: Space Phys 121(11): 11191–11212. https://doi.org/10.1002/2016JA022594. [Google Scholar]
- Cercignani C, Lampis M. 1971. Kinetic models for gas-surface interactions. Transp Theory Stat Phys 1(2): 101–114. https://doi.org/10.1080/00411457108231440. [CrossRef] [Google Scholar]
- Doornbos E. 2011. Thermospheric density and wind determination from satellite dynamics. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands. ISBN: 978-90-9026051-8. [Google Scholar]
- Doornbos E. 2012. Producing density and crosswind data from satellite dynamics observations. In: Thermospheric density and wind determination from satellite dynamics, Springer Berlin Heidelberg, Berlin, Heidelberg: 91–126. https://doi.org/10.1007/978-3-642-25129-0. [CrossRef] [Google Scholar]
- Emmert J. 2015. Thermospheric mass density: A review. Adv Space Res 56: 773–824. https://doi.org/10.1016/j.asr.2015.05.038. [CrossRef] [Google Scholar]
- Emmert J, Picone JM, Meier RR. 2008. Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys Res Lett 35(5): L05,101. https://doi.org/10.1029/2007GL032809. [CrossRef] [Google Scholar]
- Emmert JT, Drob DP, Picone JM, Siskind DE, Jones M, et al. 2020. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth Space Sci 8(3): e2020EA001321. https://doi.org/10.1029/2020EA001321. [Google Scholar]
- Gallis MA, Torczynski JR, Plimpton SJ, Rader DJ, Koehler T. 2014. Direct simulation Monte Carlo: The quest for speed. AIP Conf Proc 1628: 27–36. https://doi.org/10.1063/1.4902571. [CrossRef] [Google Scholar]
- Gregory JC, Peters PN. 1987. A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit. In: Proceedings of the 15th international symposium on rarefied gas dynamics, Vol. 1, Boffi V, Cercignani C (Eds.), B.G. Teubner, Stuttgart, pp. 644–656. [Google Scholar]
- Hedin AE, Hinton BB, Schmitt GA. 1973. Role of gas-surface interactions in the reduction of OGO 6 neutral particle mass spectrometer data. J Geophys Res 78(22): 4651–4668. https://doi.org/10.1029/JA078i022p04651. [CrossRef] [Google Scholar]
- Jackson DR, Bruinsma S, Negrin S, Stolle C, Budd CJ, et al. 2020. The Space Weather Atmosphere Models and Indices (SWAMI) project: Overview and first results. J Space Weather Space Clim 10: 18. https://doi.org/10.1051/swsc/2020019. [CrossRef] [EDP Sciences] [Google Scholar]
- Klinger B, Mayer-Gürr T. 2016. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016. Adv Space Res 58(9): 1597–1609. https://doi.org/10.1016/j.asr.2016.08.007. [CrossRef] [Google Scholar]
- Lewis HG, Saunders A, Swinerd G, Newland RJ. 2011. Effect of thermospheric contraction on remediation of the near-Earth space debris environment. J Geophys Res: Space Phys 116(A2): n/a–n/a. https://doi.org/10.1029/2011JA016482. [CrossRef] [Google Scholar]
- Liu H, Bardeen CG, Foster BT, Lauritzen P, Liu J, et al. 2018. Development and validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM-X 2.0). J Adv Model Earth Syst 10(2): 381–402. https://doi.org/10.1002/2017MS001232. [CrossRef] [Google Scholar]
- March G, Doornbos E, Visser P. 2019a. High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets. Adv Space Res 63(1): 213–238. https://doi.org/10.1016/j.asr.2018.07.009. [CrossRef] [Google Scholar]
- March G, Visser T, Visser P, Doornbos E. 2019b. CHAMP and GOCE thermospheric wind characterization with improved gas-surface interactions modelling. Adv Space Res 64(6): 1225–1242. https://doi.org/10.1016/j.asr.2019.06.023. [CrossRef] [Google Scholar]
- Matsuo T, Fedrizzi M, Fuller-Rowell TJ, Codrescu MV. 2012. Data assimilation of thermospheric mass density. Space Weather 10(5). https://doi.org/10.1029/2012SW000773. [Google Scholar]
- Mehta P, Linares R, Sutton E. 2019. Data-driven inference of thermosphere composition during solar minimum conditions. Space Weather 17(9): 1364–1379. https://doi.org/10.1029/2019SW002264. [CrossRef] [Google Scholar]
- Mehta PM, Linares R. 2018. A new transformative framework for data assimilation and calibration of physical ionosphere-thermosphere models. Space Weather 34(27): 9. https://doi.org/10.1029/2018SW001875. [Google Scholar]
- Mehta PM, McLaughlin CA, Sutton EK. 2013. Drag coefficient modeling for grace using Direct Simulation Monte Carlo. Adv Space Res 52(12): 2035–2051. https://doi.org/10.1016/j.asr.2013.08.033. [CrossRef] [Google Scholar]
- Mehta PM, Walker AC, Sutton EK, Godinez HC. 2017. New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 15(4): 558–576. https://doi.org/10.1002/2016SW001562. [CrossRef] [Google Scholar]
- Moe MM, Wallace SD, Moe K. 1993. Refinements in determining satellite drag coefficients: Method for resolving density discrepancies. J Guid Cont Dyn 16(3): 441–445. https://doi.org/10.2514/3.21029. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2001. NRLMSISE–00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res: Space Phys 107(A12): SIA 15–1–SIA 15–16. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Pilinski MD. 2011. Dynamic gas-surface interaction modeling for satellite aerodynamic computations. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO. https://scholar.colorado.edu/asen_gradetds/37/. [Google Scholar]
- Pilinski MD, Argrow BM, Palo SE. 2013a. Semi-empirical model for satellite energy-accommodation coefficients. J Spacecr Rockets 47(6): 951–956. https://doi.org/10.2514/1.49330. [Google Scholar]
- Pilinski MD, Argrow BM, Palo SE, Bowman BR. 2013b. Semi-empirical satellite accommodation model for spherical and randomly tumbling objects. J Spacecr Rockets 50(3): 556–571. https://doi.org/10.2514/1.A32348. [CrossRef] [Google Scholar]
- Pilinski MD, Bowman BA, Palo SE, Forbes JM, Davis BL, Moore RG, Koehler C, Sanders B. 2016. Comparative analysis of satellite aerodynamics and its application to space-object identification. Adv Space Res J 53(5): 1–11. https://doi.org/10.2514/1.A33482. [Google Scholar]
- Qian L, Marsh D, Merkel A, Solomon SC, Roble RG. 2013. Effect of trends of middle atmosphere gases on the mesosphere and thermosphere. J Geophys Res: Space Phys 118(6): 3846–3855. https://doi.org/10.1002/jgra.50354. [CrossRef] [Google Scholar]
- Siemes C, de Teixeira da Encarnação J, Doornbos E, Van den IJssel J, Kraus J, Pereštý R, Grunwaldt L, Apelbaum G, Flury J, Holmdahl Olsen PE. 2016. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planets Space 68(1): 92. https://doi.org/10.1186/s40623-016-0474-5. [CrossRef] [Google Scholar]
- Storz MF, Bowman BR, Branson MJI, Casali SJ, Tobiska WK. 2005. High accuracy satellite drag model (HASDM). Adv Space Res 36(12): 2497–2505. Space Weather, https://doi.org/10.1016/j.asr.2004.02.020. [Google Scholar]
- Sutton EK. 2008. Effects of solar disturbances on the thermosphere densities and winds from CHAMP and GRACE satellite accelerometer data. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO, ISBN: 1243501634. [Google Scholar]
- Sutton EK. 2018. A new method of physics-based data assimilation for the quiet and disturbed thermosphere. Space Weather 16(6): 736–753. https://doi.org/10.1002/2017SW001785. [CrossRef] [Google Scholar]
- van den IJssel J, Doornbos E, Iorfida E, March G, Montenbruck O. 2019. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65(7): 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Walker A, Mehta PM, Koller J. 2014. Drag coefficient model using the Cercignani–Lampis–Lord gas-surface interaction model. J Spacecr Rockets 51(5): 1544–1563. https://doi.org/10.2514/1.A32677. [CrossRef] [Google Scholar]
- Wilson GR, Weimer DR, Wise JO, Marcos FA. 2006. Response of the thermosphere to Joule heating and particle precipitation. J Geophys Res 111: A10314. https://doi.org/10.1029/2005JA011274. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.