Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 53 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2021034 | |
Published online | 19 October 2021 |
- Anderson RL, Born GH, Forbes JM. 2009. Sensitivity of orbit predictions to density variability. J Spacecraft Rockets 46(6): 1214–1230. https://doi.org/10.2514/1.42138. [CrossRef] [Google Scholar]
- Bruinsma S. 2015. The DTM-2013 thermosphere model. J Space Weather Space Clim 5: A1. https://doi.org/10.1051/swsc/2015001. [CrossRef] [EDP Sciences] [Google Scholar]
- Bruinsma S, Boniface C. 2021. The operational and research DTM-2020 thermosphere models. J Space Weather and Space Clim 11: 47. https://doi.org/10.1051/swsc/2021032. [CrossRef] [EDP Sciences] [Google Scholar]
- Bruinsma SL, Doornbos E, Bowman BR. 2014. Validation of GOCE densities and thermosphere model evaluation. Adv Space Res 54: 576–585. https://doi.org/10.1016/j.asr.2014.04.008. [Google Scholar]
- Bruinsma S, Sutton E, Solomon SC, Fuller-Rowell T, Fedrizzi M. 2018. Space Weather modeling capabilities assessment: Neutral density for orbit determination at low earth orbit. Space Weather 16(11): 1806–1816. https://doi.org/10.1029/2018SW002027. [CrossRef] [Google Scholar]
- Bruinsma S, Boniface C, Fedrizzi M, Sutton E. 2021a. Thermosphere modeling capabilities: geomagnetic storms. J Space Weather Space Clim 11: 12. https://doi.org/10.1051/swsc/2021002. [Google Scholar]
- Bruinsma S, Fedrizzi M, Lue J, Siemes C, Lemmens S. 2021b. Charting satellite courses in a crowded thermosphere. Eos 102: https://doi.org/10.1029/2021EO153475. [CrossRef] [Google Scholar]
- Chen J, Du J, Sang J. 2019. Improved orbit prediction of LEO objects with calibrated atmospheric mass density model. J Spatial Sci 64(1): 97–110. https://doi.org/10.1080/14498596.2017.1371089. [CrossRef] [Google Scholar]
- Doornbos E. 2011. Thermospheric density and wind determination from satellite dynamics. Ph.D. Dissertation. The University of Delft, 188 p. Available at http://repository.tudelft.nl/. [Google Scholar]
- Doornbos E, Klinkrad H, Visser P. 2008. Use of two-line element data for thermosphere neutral density model calibration. Adv Space Res 41(7): 1115–1122. https://doi.org/10.1016/j.asr.2006.12.025. [CrossRef] [Google Scholar]
- Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A. 2003. GOCE: ESA’s first Earth explorer core mission. Space Sci Rev 108: 419–432. https://doi.org/10.1007/978-94-017-1333-7_36. [CrossRef] [Google Scholar]
- Dudok de Wit T, Bruinsma S, Shibasaki S. 2014. Synoptic radio observations as proxies for upper atmosphere modeling. J. Space Weather Space Clim 4: A06. https://doi.org/10.1051/swsc/2014003. [CrossRef] [EDP Sciences] [Google Scholar]
- Emmert J. 2015. Thermospheric mass density: A review. Adv Space Res. 56(5): 773–824. https://doi.org/10.1016/j.asr.2015.05.038. [CrossRef] [Google Scholar]
- Emmert JT, Warren HT, Segerman AM, Byers JM, Picone JM. 2017. Propagation of atmospheric density errors to satellite orbits. Adv Space Res 59(1): 147–165. https://doi.org/10.1016/j.asr.2016.07.036. [CrossRef] [Google Scholar]
- ESA. 1999. The four candidate Earth explorer core missions – Gravity field and steady-state ocean circulation explorer. European Space Agency Report SP-1233(1). [Google Scholar]
- Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X. 2005. Thermospheric density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res 110: A12S27. https://doi.org/10.1029/2004JA010856. [Google Scholar]
- Friis-Christensen E, Lühr H, Knudsen D, Haagmans R. 2008. Swarm – An earth observation mission investigating geospace. Adv Space Res 41(1): 210–216. https://doi.org/10.1016/j.asr.2006.10.008. [CrossRef] [Google Scholar]
- Giza D, Singla P, Jah M. 2009. An approach for nonlinear uncertainty propagation: Application to orbital mechanics. In: AIAA Guidance, Navigation, and Control Conference. AIAA 2009-6082. https://doi.org/10.2514/6.2009-6082. [Google Scholar]
- Guo J, Wan W, Forbes JM, Sutton E, Nerem RS, Woods TN, Bruinsma S, Liu L. 2007. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res 112: A10308. https://doi.org/10.1029/2007JA012409. [CrossRef] [Google Scholar]
- Hejduk MD, Snow DE. 2018. The effect of neutral density estimation errors on satellite conjunction serious event rates. Space Weather 16: 849–869. https://doi.org/10.1029/2017SW00172. [CrossRef] [Google Scholar]
- Hilton S, Cairola F, Gardi A, Sabatini R, Pongsakornsathien N, Ezer N. 2019. Uncertainty quantification for Space Situational Awareness and Traffic Management. Sensors(Basel) 19(20): 4361. https://doi.org/10.3390/s19204361. [CrossRef] [Google Scholar]
- Knipp D, Kilcommons L, Hunt L, Mlynczak M, Pilipenko V, Bowman B, Deng Y, Drake K. 2013. Thermospheric damping response to sheath-enhanced geospace storms. Geophys Res Lett 40: 1263–1267. https://doi.org/10.1002/grl.50197. [CrossRef] [Google Scholar]
- Lathuillère C, Menvielle M, Marchaudon A, Bruinsma S. 2008. A statistical study of the observed and modeled global thermosphere response to magnetic activity at mid and low latitudes. J Geophys Res 113: A07311. https://doi.org/10.1029/2007JA012991. [Google Scholar]
- Liu H, Luhr H. 2005. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res 110: A09S29. https://doi.org/10.1029/2004JA010908. [Google Scholar]
- Lopez-Jimenez S, Pastor A, Escobar D. 2021. Improving orbital uncertainty realism through covariance determination. Acta Astron 181: 679–693. https://doi.org/10.1016/j.actaastro.2020.09.026. [CrossRef] [Google Scholar]
- Matzka J, Stolle C, Kervalishvili G, Rauberg J, Yamazaki Y. 2019. The Hp geomagnetic index test dataset 2003, 2004, 2005, and 2017. GFZ Data Services. https://doi.org/10.5880/GFZ.2.3.2019.002. [Google Scholar]
- Mehta PM, Walker A, Lawrence E, Linares R, Higdon D, Koller J. 2014. Modeling satellite drag coefficient with response model. Adv Space Res 54(8): 1590–1607. https://doi.org/10.1016/j.asr.2014.06.033. [CrossRef] [Google Scholar]
- Petit A, Lemaitre A. 2016. The impact of the atmospheric model and of the space weather data on the dynamics of clouds of space debris. Adv Space Res. 57: 2245–2258. https://doi.org/10.1016/j.asr.2016.03.005. [CrossRef] [Google Scholar]
- Qian L, Solomon SC. 2011. Thermospheric Density: An overview of temporal and spatial variations. Space Sci Rev 168: 147–173. https://doi.org/10.1007/s11214-011-9810-z. [Google Scholar]
- Reigber C, Bock R, Förste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner C. 1996. CHAMP Phase B: Executive Summary. Scientific Technical Report STR; 96/13. Potsdam: GFZ German Research Centre for Geosciences 24 p. https://doi.org/10.2312/gfz.b103-96131. [Google Scholar]
- Reister DB. 1997. The least-squares fit of a hyperplane to uncertain data. Robotica 15(4): 461–464. [CrossRef] [Google Scholar]
- Rubin-Delanchy P. 2021. Manifold structure in graph embeddings. arXiv:2006.05168v3. [Google Scholar]
- Schiemenz F, Utzmann J, Kayal H. 2019. Least squares orbit estimation including atmospheric density uncertainty consideration. Adv Space Res 63(12): 3916–3935. https://doi.org/10.1016/j.asr.2019.02.039. [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [Google Scholar]
- Sober B, Aizenbud Y, Levin D. 2020. Approximation of functions over Manifolds: a moving least Least-Squares Approach. arXiv:1711.00765v4. [Google Scholar]
- Solomon S, Quian L, Didkovsky L, Viereck R, Woods T. 2011. Causes of low thermospheric density during the 2007–2009 solar minimum. J Geophys Res 116: A00H07. https://doi.org/10.1029/2011JA016508. [Google Scholar]
- Storz MF, Bowman BR, Branson MJI, Casali SJ, Kent Tobiska W. 2005. High Accuracy satellite drag model (HASDM). Adv Space Res 36: 2497–2505. https://doi.org/10.1016/j.asr.2004.02.020. [CrossRef] [Google Scholar]
- Sutton EK, Forbes JM, Knipp DJ. 2009. Rapid response of the thermosphere to variations in Joule heating. J. Geophys Res 114: A04319. https://doi.org/10.1029/2008JA013667. [Google Scholar]
- SWAMI H2020 Program: Space Weather Models and Indexes. http://swami-h2020.eu. [Google Scholar]
- Tapley BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31: L09607. https://doi.org/10.1029/2004GL019920. [Google Scholar]
- Tobiska W, Bowman B, Bouwer S, Cruz A, Wahl K, Pilinski M, Mehta P, Licata RJ. 2021. The SET HASDM density database. Space Weather 19: e2020SW002682. https://doi.org/10.1029/2020SW002682. [CrossRef] [Google Scholar]
- Touboul P, Willemenot E, Foulon B, Josselin V. 1999. Accelerometers for CHAMP, GRACE, and GOCE space missions: synergy and evolution. Boll Geof Teor Appl 40: 321–327. [Google Scholar]
- Vallado D, Finkleman D. 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astron 95: 141–165. https://doi.org/10.1016/j.actaastro.2013.10.005. [CrossRef] [Google Scholar]
- Van den Ijssel J, Doornbos E, Iorfida E, March G, Siemes C, Montenbrück O. 2020. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65(7): 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Visser PNAM, Van den Ijssel JAA. 2016. Orbit determination and estimation of non-gravitational accelerations for the GOCE re-entry phase. Adv Space Res 58: 1840–1853. https://doi.org/10.1016/j.asr.2016.07.013. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.