Open Access
Research Article
Issue
J. Space Weather Space Clim.
Volume 11, 2021
Article Number 55
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2021038
Published online 23 November 2021
  • Angelopoulos V. 2009. The THEMIS Mission. In: The THEMIS Mission. Burch JL, Angelopoulos V, (Eds.) Springer, New York, NY. pp. 5–34. ISBN 978-0-387-89820-9. [Google Scholar]
  • Anspaugh BE. 1996. GaAs solar cell radiation handbook. Technical Report. NASA – Jet Propulsion Laboratory. [Google Scholar]
  • Autric J-M, Escourrou P, Laine I. 2018. Telecom Spacecraft mission design: Electric orbit raising for airbus communications satellites. In: 2018 SpaceOps Conference, pp. 2601. [Google Scholar]
  • Beutier T, Boscher D, France M. 1995. SALAMMBO: A three-dimensional simulation of the proton radiation belt. J Geophys Res (Space Phys) 100(A9): 17181–17188. https://doi.org/10.1029/94JA02728. [Google Scholar]
  • Boscher D, Bourdarie S, O’Brien P, Guild T, Shumko M. 2012. Irbem-Lib Library. [Google Scholar]
  • Boscher D, Bourdarie S, Friedel R, Korth A. 1998. Long term dynamic radiation belt model for low energy protons. Geophys Res Lett 25(22): 4129–4132. https://doi.org/10.1029/1998GL900077. [Google Scholar]
  • Bourdarie S, Blake B, Cao JB, Friedel R, Miyoshi Y, Panasyuk M, Underwood C. 2008. Standard file format guidelines. Technical report. COSPAR Panel on Radiation Belt Environment Modeling (PRBEM). [Google Scholar]
  • Combier N, Claret A, Laurent P, Maget V, Boscher D, Ferrari A, Brugger M. 2017. Improvements of FLUKA Calculation of the Neutron Albedo. IEEE Trans Nucl Sci 64(1): 614–621. https://doi.org/10.1109/TNS.2016.2611019. [Google Scholar]
  • Cornwall JM, Sims AR, Stephen White R. 1965. Atmospheric density experienced by radiation belt protons. J Geophys Res (1896–1977) 70(13): 3099–3111. https://doi.org/10.1029/JZ070i013p03099. [Google Scholar]
  • Delonno E, Marvin DC, Liu SH. 2013. Assessment of AP9 and solar cell degradation models with flight data. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). pp. 3103–3107. https://doi.org/10.1109/PVSC.2013.6745116. [Google Scholar]
  • Elkington SR, Hudson MK, Wiltberger MJ, Lyon JG. 2002. MHD/particle simulations of radiation belt dynamics. J Atmos Sol-Terr Phys 64(5): 607–615. https://doi.org/10.1016/S1364-6826(02)00018-4. [Google Scholar]
  • Engel MA, Kress BT, Hudson MK, Selesnick RS. 2015. Simulations of inner radiation belt proton loss during geomagnetic storms. J Geophys Res (Space Phy) 120(11): 9323–9333. https://doi.org/10.1002/2015JA021568. [Google Scholar]
  • Fenton L. 1960. The sum of log-normal probability distributions in scatter transmission systems. IEEE Trans Commun 8(1): 57–67. https://doi.org/10.1109/TCOM.1960.1097606. [Google Scholar]
  • Ginet GP, O’Brien TP, Huston SL, Johnston WR, Guild TB, et al. 2013. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Sci Rev 179(1): 579–615. https://doi.org/10.1007/s11214-013-9964-y. [Google Scholar]
  • Gussenhoven MS, Mullen EG, Brautigam DH. 1996. Improved understanding of the Earth’s radiation belts from the CRRES satellite. IEEE Trans Nucl Sci 43(2): 353–368. https://doi.org/10.1109/23.490755. [Google Scholar]
  • Hedin AE. 1987. MSIS-86 thermospheric model. J Geophys Res (Space Phys) 92(A5): 4649–4662. https://doi.org/10.1029/JA092iA05p04649. [Google Scholar]
  • Hudson MK, Kotelnikov AD, Li X, Roth I, Temerin M, Wygant J, Blake JB, Gussenhoven MS. 1995. Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys Res Lett 22(3): 291–294. https://doi.org/10.1029/95GL00009. [Google Scholar]
  • Hudson MK, Marchenko VA, Roth I, Temerin M, Blake JB, Gussenhoven MS. 1998. Radiation belt formation during storm sudden commencements and loss during main phase. Adv Space Res 21(4): 597–607. https://doi.org/10.1016/S0273-1177(97)00969-1. [Google Scholar]
  • Ishikawa H, Miyake W, Matsuoka A. 2013. Variation of proton radiation belt deduced from solar cell degradation of Akebono satellite. Earth Planets Space 65(2): 121–125. https://doi.org/10.5047/eps.2012.06.004. [Google Scholar]
  • Jenkins PP, Bentz DC, Barnds J, Binz CR, Messenger SR, Warner JH, Krasowski MJ, Prokop NF, Spina DC, O’Neill M. 2014. TACSAT-4 solar cell experiment: Two years in orbit. In: 10th European Space Power Conference, Noordwijkerhout, Netherlands, Vol. 14. [Google Scholar]
  • Jenkins PP, Bentz DC, Barnds J, Binz CR, Messenger SR, et al. 2013. Initial results from the TacSat-4 solar cell experiment. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). pp. 3108–3111. https://doi.org/10.1109/PVSC.2013.6745117. [Google Scholar]
  • Johnston WR, Lindstrom CD, Huston SL, Young SL. 2012. CEASE observations of the radiation belts: Elevated protons in the slot region. AGU Fall Meeting Abstracts 23: SM23B–2312. [Google Scholar]
  • Johnston WR, Paul O’Brien T, Huston SL, Guild TB, Ginet GP. 2015. Recent updates to the AE9/AP9/SPM radiation belt and space plasma specification model. IEEE Trans Nucl Sci 62(6): 2760–2766. https://doi.org/10.1109/TNS.2015.2476470. [Google Scholar]
  • Kress BT, Hudson MK, Slocum LP. 2005. Impulsive solar energetic ion trapping in the magnetosphere during geomagnetic storms. Geophys Res Lett 32(6). https://doi.org/10.1029/2005GL022373. [Google Scholar]
  • Lejosne S, Boscher D, Maget V, Rolland G. 2013. Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit. J Geophys Res (Space Phys) 118(6): 3147–3156. https://doi.org/10.1002/jgra.50361. [Google Scholar]
  • Leske RA, Mewaldt RA, Stone EC, Rosenvinge TT. 2001. Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the Space Station. J Geophys Res (Space Phys) 106(A12): 30011–30022. https://doi.org/10.1029/2000JA000212. [Google Scholar]
  • Lev D, Myers RM, Lemmer KM, Kolbeck J, Koizumi H, Polzin K. 2019. The technological and commercial expansion of electric propulsion. Acta Astronaut 159: 213–227. https://doi.org/10.1016/j.actaastro.2019.03.058. [Google Scholar]
  • Lozinski AR, Horne RB, Glauert SA, Del Zanna G, Heynderickx D, Evans HDR. 2019. Solar cell degradation due to proton belt enhancements during electric orbit raising to GEO. Space Weather 17(7): 1059–1072. https://doi.org/10.1029/2019SW002213. [Google Scholar]
  • Maget V, Bourdarie S, Boscher D. 2008. Direct data assimilation over solar cycle time-scales to improve proton radiation belt models. IEEE Trans Nucl Sci 55(4): 2188–2196. https://doi.org/10.1109/TNS.2008.921928. [Google Scholar]
  • Maget V, Ferrari A, Laurent P, Claret A, Brugger M, Combier N, Grimald SR, Brunet A. 2018. First results CRAND modelling improvement in the Salammbô proton code, based on FluKa simulations of neutron albedo generation. In: 42nd COSPAR Scientific Assembly. pp. PRBEM.1–2–18. [Google Scholar]
  • Manweiler JW, Mull H. 2017. RBSPICE science data handbook. Technical report. [Google Scholar]
  • Matéo-Vélez J, Artola L, Bérend N, David J, Dirassen B, Hubert G, Inguimbert C, Lazaro D, Nuns T, Packan DM, Paulmier T, Sarrailh P. 2017. Estimating space environment effects during all-electric telecom satellite missions. In: Proc 35th Int Electr Propuls Conf Georgia Inst. Technol. [Google Scholar]
  • McFadden JP, Carlson CW, Larson D, Bonnell J, Mozer F, Angelopoulos V, Glassmeier K-H, Auster U. 2009. THEMIS ESA First Science Results and Performance Issues. In: The THEMIS Mission. Burch JL, Angelopoulos V, (Eds.) Springer, New York, NY. pp. 477–508. ISBN 978-0-387-89820-9 [Google Scholar]
  • Messenger SR, Jackson EM, Warner JH, Walters RJ. 2010. Scream: A new code for solar cell degradation prediction using the displacement damage dose approach. In: 2010 35th IEEE Photovoltaic Specialists Conference, IEEE. pp. 001106–001111. [Google Scholar]
  • Messenger Scott R, Summers GP, Burke EA, Walters RJ, Xapsos MA. 2001. Modeling solar cell degradation in space: A comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches. Prog Photovol Res Appl 9(2): 103–121. [Google Scholar]
  • Messenger SR, Wong F, Hoang B, Cress CD, Walters RJ, Kluever CA, Jones G. 2014. Low-thrust geostationary transfer orbit (LT2GEO) Radiation environment and associated solar array degradation modeling and ground testing. IEEE Trans Nucl Sci 61(6): 3348–3355. https://doi.org/10.1109/TNS.2014.2364894. [Google Scholar]
  • Mitchell DG, Lanzerotti LJ, Kim CK, Stokes M, Ho G, et al. 2014. Radiation belt storm probes ion composition experiment (RBSPICE). In: The Van Allen Probes Mission. Fox N, Burch JL, (Eds.) Springer, Boston, MA. pp. 263–308. ISBN 978-1-4899-7433-4 [Google Scholar]
  • Nakada MP, Mead GD. 1965. Diffusion of protons in the outer radiation belt. J Geophys Res (1896–1977) 70(19): 4777–4791. https://doi.org/10.1029/JZ070i019p04777. [Google Scholar]
  • Olson WP, Pfitzer KA. 1974. A quantitative model of the magnetospheric magnetic field. J Geophys Res (1896–1977) 79(25): 3739–3748. https://doi.org/10.1029/JA079i025p03739. [Google Scholar]
  • Peyrard PF, Beutier T, Serres O, Chatry C, Ecoffet R, Rolland G, Boscher D, Bourdarie S, Inguimbert C, Calvel P. 2003. OMERE 2.0 a toolkit for space environment. In: IEEE Proceedings of the 7th European Conference on Radiation and Its Effects on Components and Systems RADECS. pp. 639–641. [Google Scholar]
  • Sawyer DM, Vette JI. 1976. AP-8 trapped proton environment for solar maximum and solar minimum. NASA STI/Recon Technical Report Number 77. [Google Scholar]
  • Selesnick RS, Baker DN, Jaynes AN, Li X, Kanekal SG, Hudson MK, Kress BT. 2014. Observations of the inner radiation belt: CRAND and trapped solar protons. J Geophys Res (Space Phys) 119(8): 6541–6552. https://doi.org/10.1002/2014JA020188. [Google Scholar]
  • Selesnick RS, Hudson MK, Kress BT. 2010. Injection and loss of inner radiation belt protons during solar proton events and magnetic storms. J Geophys Res (Space Phys) 115(A8). https://doi.org/10.1029/2010JA015247. [Google Scholar]
  • Selesnick RS, Hudson MK, Kress BT. 2013. Direct observation of the CRAND proton radiation belt source. J Geophys Res (Space Phys) 118(12): 7532–7537. https://doi.org/10.1002/2013JA019338. [Google Scholar]
  • Selesnick RS, Looper MD, Mewaldt RA. 2007. A theoretical model of the inner proton radiation belt. Space Weather 5(4) https://doi.org/10.1029/2006SW000275. [Google Scholar]
  • Spence HE, Reeves GD, Baker DN, Blake JB, Bolton M, et al. 2013. Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen Probes Mission. Space Sci Rev 179: 311–336. https://doi.org/10.1007/s11214-013-0007-5. [Google Scholar]
  • Spjeldvik WN. 1977. Equilibrium structure of equatorially mirroring radiation belt protons. J Geophys Res (1896–1977) 82(19): 2801–2808. https://doi.org/10.1029/JA082i019p02801. [Google Scholar]
  • Summers GP, Walters RJ, Xapsos MA, Burke EA, Messenger SR, Shapiro P, Statler RL. 1994. A new approach to damage prediction for solar cells exposed to different radiations. In: Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), vol. 2, IEEE. pp. 2068–2075. [Google Scholar]
  • Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: The 12th generation. Earth Planets Space 67(1): 79. https://doi.org/10.1186/s40623-015-0228-9. [Google Scholar]
  • Vacaresse A, Boscher D, Bourdarie S, Blanc M, Sauvaud JA. 1999. Modeling the high-energy proton belt. J Geophys Res (Space Phys) 104(A12): 28601–28613. https://doi.org/10.1029/1999JA900411. [Google Scholar]
  • Violet MD, Lynch K, Redus R, Riehl K, Boughan E, Hein C. 1993. Proton telescope (PROTEL) on the CRRES spacecraft. IEEE Trans Nucl Sci 40(2): 242–245. https://doi.org/10.1109/23.212348. [Google Scholar]
  • Walters R, Summers GP, Warner JH, Messenger S, Lorentzen JR, Morton T, Taylor SJ, Evans H, Heynderickx D, Quaghebeur B. 2007. SPENVIS Implementation of end-of-life solar cell calculations using the displacement damage dose methodology. In: 19th Space Photovoltaic Research and Technology Conference. p. 25. [Google Scholar]
  • Williams CKI, Rasmussen CE. 2006. Gaussian processes for machine learning, vol. 2, MIT Press, Cambridge, MA. [Google Scholar]
  • Yando K, Millan RM, Green JC, Evans DS. 2011. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument. J Geophys Res (Space Phys) 116(A10) https://doi.org/10.1029/2011JA016671. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.