Open Access
Issue |
J. Space Weather Space Clim.
Volume 11, 2021
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2021040 | |
Published online | 23 November 2021 |
- Aarons J. 1982. Global morphology of ionospheric scintillations. Proc. IEEE 70(4): 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Aarons J, Guidice D. 1966. The size of low-latitude ionospheric irregularities determined from observations of discrete sources of different angular diameters. J Geophys Res 71(13): 3277–3280.https://doi.org/10.1029/JZ071i013p03277. [CrossRef] [Google Scholar]
- Angling MJ. 2008. First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM). Ann Geophys 26(2): 353–359. https://doi.org/10.5194/angeo-26-353-2008. [CrossRef] [Google Scholar]
- Angling MJ, Jackson-Booth NK. 2011. A short note on the assimilation of collocated and concurrent GPS and ionosonde data into the Electron Density Assimilative Model. Radio Sci 46(4): https://doi.org/10.1029/2010RS004566. http://www.scopus.com/inward/record.url?eid=2-s2.0-79961243531&partnerID=40&md5=b77f3095bba218c9c9ed4c0edd36466b. [CrossRef] [Google Scholar]
- Angling MJ, Cannon PS, Bradley P. 2012. Ionospheric propagation. In: Propagation of Radiowaves. Barclay LW, (Ed.) Institution of Engineering and Technology, London, UK. pp. 199–233. https://doi.org/10.1049/PBEW056E_ch12. https://digital-library.theiet.org/content/books/10.1049/pbew056e_ch12 [CrossRef] [Google Scholar]
- Ao CO, Hajj GA, Meehan TK, Dong D, Iijima BA, Mannucci AJ, Kursinski ER. 2009. Rising and setting GPS occupations by use of open-loop tracking. J Geophys Res Atmos 114(4): D04101. https://doi.org/10.1029/2008JD010483. http://doi.wiley.com/10.1029/2008JD010483. [Google Scholar]
- Basu S, Basu S, Senior C, Weimer D, Nielsen E, Fougere PF. 1986. Velocity Shears and Sub-KM scale Irregularities in the nighttime auroral F-region. Geophys Res Lett 13(1): 101–104. https://doi.org/10.1029/GL013i002p00101. [CrossRef] [Google Scholar]
- Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE. 1999. The International GPS Service (IGS): An interdisciplinary service in support of earth sciences. Adv Space Res 23(4): 631–653. https://doi.org/10.1016/S0273-1177(99)00160-X. [CrossRef] [Google Scholar]
- Blewitt G. 1990. An automatic editing algorithm for GPS data. Geophys Res Lett 17(3): 199–202. https://doi.org/10.1029/GL017i003p00199. [CrossRef] [Google Scholar]
- Bryce D, Cappaert J. 2019. Smallsat Manufacturing: The Spire “Constant NPI” Model, SSC19-I-01. In: Proceedings of the AIAA/USU Conference on Small Satellite Production – Driving a Revolution. https://digitalcommons.usu.edu/smallsat/2019/all2019/267/. [Google Scholar]
- Cannon PS, Groves K, Fraser DJ, Donnelly WJ, Perrier K. 2006. Signal distortion on VHF/UHF transionospheric paths: First results from the Wideband Ionospheric Distortion Experiment. Radio Sci 41(5): RS5S40. https://doi.org/10.1029/2005RS003369. http://doi.wiley.com/10.1029/2005RS003369. [CrossRef] [Google Scholar]
- Cappaert J. 2018. Building, deploying and operating a cubesat constellation – exploring the less obvious reasons space is hard, SSC18-IV-03. In: Proceedings of the AIAA/USU Conference on Small Satellites – Delivering Mission Success. https://digitalcommons.usu.edu/smallsat/2018/all2018/274/. [Google Scholar]
- Crane RK. 1976. Spectra of ionospheric scintillation. J Geophys Res 81(13): 2041–2050. https://doi.org/10.1029/ja081i013p02041. http://doi.wiley.com/10.1029/JA081i013p02041. [CrossRef] [Google Scholar]
- Dymond KF. 2012. Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci 47(3): 1–10. https://doi.org/10.1029/2011RS004931. [CrossRef] [Google Scholar]
- Elvidge S, Angling MJ. 2019. Using the local ensemble Transform Kalman Filter for upper atmospheric modelling. J. Space Weather Space Clim 9: A30. https://doi.org/10.1051/swsc/2019018. [CrossRef] [EDP Sciences] [Google Scholar]
- Fejer BG, Kelly M. 1980. Ionospheric irregularities. Rev Geophys 18(2):401–454. https://doi.org/10.1029/RG018i002p00401. [CrossRef] [Google Scholar]
- Fjeldbo G, Kliore AJ, Eshleman VR. 1971. The neutral atmosphere of venus as studied with the Mariner V Radio Occultation Experiments. Astron J 76: 123. https://doi.org/10.1086/111096. [CrossRef] [Google Scholar]
- Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA. 1978. Early results from the DNA Wideband satellite experiment – Complex-signal scintillation. Radio Sci 13(1): 167–187. https://doi.org/10.1029/RS013i001p00167. [CrossRef] [Google Scholar]
- Galkin IA, Reinisch BW, Huang X, Bilitza D. 2012. Assimilation of GIRO data into a real-time IRI. Radio Sci 47(4): https://doi.org/10.1029/2011RS004952. [CrossRef] [Google Scholar]
- Gorbunov ME, Kornblueh L. 2001. Analysis and validation of GPS/MET radio occultation data. J Geophys Res Atmos 106(D15): 17161–17169. https://doi.org/10.1029/2000JD900816. [CrossRef] [Google Scholar]
- Hajj GA, Ibañez-Meier R, Kursinski ER, Romans LJ. 1994. Imaging the ionosphere with the global positioning system. Int J Imaging Syst Technol 5(2): 174–187. https://doi.org/10.1002/ima.1850050214. http://doi.wiley.com/10.1002/ima.1850050214. [CrossRef] [Google Scholar]
- Hajj GA, Lee LC, Pi X, Romans LJ, Schreiner WS, Straus PR, Wang C. 2000. COSMIC GPS ionospheric sensing and space weather. Terr Atmos Ocean Sci 11(1): 235–272. https://doi.org/10.3319/TAO.2000.11.1.235(COSMIC). [CrossRef] [Google Scholar]
- Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS. 2002. A technical description at atmospheric sounding by GPS occultation. J Atmos Sol-Terr Phys 64(4): 451–469. https://doi.org/10.1016/S1364-6826(01)00114-6. [CrossRef] [Google Scholar]
- Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP. 2004. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res Atmos 109(6): https://doi.org/10.1029/2003jd003909. [Google Scholar]
- Hardy KR, Hajj GA, Kursinski ER. 1994. Accuracies of atmospheric profiles obtained from GPS occultations. Int J Satell Commun 12(5): 463–473. https://doi.org/10.1002/sat.4600120508. http://doi.wiley.com/10.1002/sat.4600120508. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2000. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16): 2473–2476. https://doi.org/10.1029/2000GL000032. http://doi.wiley.com/10.1029/2000GL000032. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2008. Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43(5): https://doi.org/10.1029/2007RS003817. http://doi.wiley.com/10.1029/2007RS003817. [Google Scholar]
- Hsu C-T, Matsuo T, Yue X, Fang T-W, Fuller-Rowell T, Ide K, Liu J-Y. 2018. Assessment of the impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification: Observing system simulation experiments using ensemble square root filter. J Geophys Res Space Phys 123(3): 2296–2314. https://doi.org/10.1002/2017JA025109. http://doi.wiley.com/10.1002/2017JA025109. [CrossRef] [Google Scholar]
- Huang CS, De La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, Hairston MR. 2012a. Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator. J Geophys Res Space Phys 117(11): 1–11. https://doi.org/10.1029/2012JA018163. [CrossRef] [Google Scholar]
- Huang CS, Retterer JM, De La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, Pfaff RF. 2012b. Observations and simulations of formation of broad plasma depletions through merging process. J Geophys Res Space Phys 117(2): 1–11. https://doi.org/10.1029/2011JA017084. [CrossRef] [Google Scholar]
- Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys D Nonlinear Phenom 230(1–2): 112–126. https://doi.org/10.1016/j.physd.2006.11.008. [CrossRef] [Google Scholar]
- Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan TK. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29(10): 95-1–95-4. https://doi.org/10.1029/2001GL014364. http://doi.wiley.com/10.1029/2001GL014364. [CrossRef] [Google Scholar]
- Jakowski N, Leitinger R, Angling MJ. 2009. Radio occultation techniques for probing the ionosphere. Ann Geophys 47(2–3 Sup.): 1049–1066. https://doi.org/10.4401/ag-3285. http://www.scopus.com/inward/record.url?eid=2-s2.0-8844263125&partnerID=40&md5=325faf47b4c45fb685e88828202790b2. [Google Scholar]
- Jales P, Esterhuizen S, Masters D, Nguyen V, Nogués-Correig O, Yuasa T, Cartwright J. 2020. The new Spire GNSS-R satellite missions and products. In: Image and Signal Processing for Remote Sensing XXVI, Vol. 11533. Notarnicola C, Bovenga F, Bruzzone L, Bovolo F, Benediktsson JA, Santi E, Pierdicca N, (Eds.), SPIE. pp. 41. https://doi.org/10.1117/12.2574127. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11533/2574127/The-new-Spire-GNSS-R-satellite-missions-and-products/10.1117/12.2574127.full [CrossRef] [Google Scholar]
- Jin S, Cardellach E, Xie F. 2014. GNSS Remote Sensing: Theory, Methods and Applications. Springer. https://doi.org/10.1007/978-94-007-7482-7. http://link.springer.com/10.1007/978-94-007-7482-7_1. [CrossRef] [Google Scholar]
- Johnstone A. 2020. Cubesat Design Specification. CP-CDS-R14, Cal. Poly. https://www.cubesat.org/s/CDS-REV14-2020-07-31-DRAFT.pdf. [Google Scholar]
- Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5(9): https://doi.org/10.1029/2006SW000260. [Google Scholar]
- Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ. 2010. JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res Space Phys 115(2): 1–10. https://doi.org/10.1029/2009JA014420. [Google Scholar]
- Kursinski ER, Hajj GA, Bertiger WI, Leroy SS, Meehan TK, et al. 1996. Initial results of radio occultation observations of Earth’s atmosphere using the global positioning system. Science 271(5252): 1107–1110. https://doi.org/10.1126/science.271.5252.1107. [CrossRef] [Google Scholar]
- Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR. 1997. Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res Atmos 102(19): 23429–23465. https://doi.org/10.1029/97jd01569. [CrossRef] [Google Scholar]
- Limberger M. 2015. Ionosphere modeling from GPS radio occultations and complementary data based on B-splines, PhD Thesis, Technische Universität München. https://mediatum.ub.tum.de/doc/1254715/1254715.pdf. [Google Scholar]
- Mannucci AJ, Ao CO, Pi X, Iijima BA. 2011. The impact of large scale ionospheric structure on radio occultation retrievals. Atmos Meas Tech 4(12): 2837–2850. https://doi.org/10.5194/amt-4-2837-2011. http://www.atmos-meas-tech.net/4/2837/2011/. [CrossRef] [Google Scholar]
- Molina C, Camps A. 2020. First evidences of ionospheric plasma depletions observations using GNSS-R data from CYGNSS. Remote Sens 12(22): 1–21. https://doi.org/10.3390/rs12223782. https://www.mdpi.com/2072-4292/12/22/3782. [CrossRef] [Google Scholar]
- Nava B, Coisson P, Radicella S. 2008. A new version of the neQuick ionosphere electron density model. J Atmos Sol-Terr Phys 70: 1856–1862. https://doi.org/10.1016/j.jatsp.2008.01.015. [CrossRef] [Google Scholar]
- Nguyen VA, Nogués-Correig O, Yuasa T, Masters D, Irisov V. 2020. Initial GNSS phase altimetry measurements from the spire satellite constellation. Geophys Res Lett 47(15): e2020GL088308. https://doi.org/10.1029/2020GL088308. https://onlinelibrary.wiley.com/doi/10.1029/2020GL088308. [Google Scholar]
- Pedatella NM. 2011. Response of the ionosphere-plasmasphere system to periodic forcing. University of Colorado, Boulder. https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/cj82k760d. [Google Scholar]
- Pedatella NM, Yue X, Schreiner WS. 2015. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J Geophys Res A Space Phys 120(10): 8942–8953. https://doi.org/10.1002/2015JA021704. http://doi.wiley.com/10.1002/2015JA021704. [CrossRef] [Google Scholar]
- Rodgers CD. 2000. Inverse methods for atmospheric sounding: Theory and practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics. World Scientific Publishing, Singapore. https://doi.org/10.1142/3171. [CrossRef] [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of Tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Sci Rep 7: 46607. https://doi.org/10.1038/srep46607. https://github.com/giorgiosavastano/VARION. [CrossRef] [Google Scholar]
- Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4): 949–966. https://doi.org/10.1029/1999RS900034. http://doi.wiley.com/10.1029/1999RS900034. [CrossRef] [Google Scholar]
- Sofieva VF, Dalaudier F, Vernin J. 2013. Using stellar scintillation for studies of turbulence in the Earth’s atmosphere. Philos Trans R Soc A Math Phys Eng Sci 371(1982): 20120174. https://doi.org/10.1098/rsta.2012.0174. [CrossRef] [Google Scholar]
- Teunissen PJG, Montenbruck O. 2017. Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1. [CrossRef] [Google Scholar]
- Twomey S. 1977. Introduction to the mathematics of inversion in remote sensing and indirect measurement. Dover Publications, New York. 978-0-444-41547-9 [Google Scholar]
- Wang Q, Jin S, Yuan L, Hu Y, Chen J, Guo J. 2020. Estimation and analysis of BDS-3 differential code biases from MGEX observations. Remote Sens 12(1): 68. https://doi.org/10.3390/RS12010068. [Google Scholar]
- Wang Y, Morton YJ. 2021. Ionospheric total electron content and disturbance observations from space borne coherent GNSS-R measurements. Submitted to IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3093328 [Google Scholar]
- Wu DL. 2018. New global electron density observations from GPS-RO in the D- and E-Region ionosphere. J Atmos Sol Terr Phys 171: 36–59. https://doi.org/10.1016/j.jastp.2017.07.013. https://www.sciencedirect.com/science/article/pii/S1364682617301050?via%3Dihub. [CrossRef] [Google Scholar]
- Wu X, Hu X, Gong X, Zhang X, Wang X. 2009. An asymmetry correction method for ionospheric radio occultation. J Geophys Res Space Phys 114(A3): n/a–n/a, https://doi.org/10.1029/2008JA013025. http://doi.wiley.com/10.1029/2008JA013025. [Google Scholar]
- Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo YH. 2011. Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather 9(9): 09001. https://doi.org/10.1029/2011SW000687. [Google Scholar]
- Zhong J, Lei J, Yue X, Dou X. 2016. Determination of Differential Code Bias of GNSS Receiver Onboard Low Earth Orbit Satellite. IEEE Trans Geosci Remote Sens 54(8): 4896–4905. https://doi.org/10.1109/TGRS.2016.2552542. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.