Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 33 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2022029 | |
Published online | 14 September 2022 |
- Andalsvik YL, Jacobsen KS. 2014. Observed high-latitude GNSS disturbances during a less-than-minor geomagnetic storm. Radio Sci 49: 1277–1288. https://doi.org/10.1002/2014RS005418. [CrossRef] [Google Scholar]
- Astafyeva E, Zakharenkova I, Förster M. 2015. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J Geophys Res Space Phys 120: 9023–9037. https://doi.org/10.1002/2015JA021629. [CrossRef] [Google Scholar]
- Bahadur B, Nohutcu M. 2021. Real-time single-frequency multi-GNSS positioning with ultra-rapid products. Meas Sci Technol 32: 014003. https://doi.org/10.1088/1361-6501/abab22. [CrossRef] [Google Scholar]
- Beeck SS, Jensen ABO. 2021. ROTI maps of Greenland using kriging. J Geod Sci 11: 83–94. https://doi.org/10.1515/jogs-2020-0123. [CrossRef] [Google Scholar]
- Bock Y, Gourevitch SA, Counselman I, Charles C, King RW, Abbot RI. 1986. Interferometric analysis of GPS phase observations. Manuscripta Geodaetica 11: 282–288. [Google Scholar]
- Boehm J, Niell A, Tregoning P, Schuh H. 2006. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res Lett 33: L07304. https://doi.org/10.1029/2005GL025546. [CrossRef] [Google Scholar]
- Chang X-W, Yang X, Zhou T. 2005. MLAMBDA: a modified LAMBDA method for integer least-squares estimation. J Geod 79: 552–565. https://doi.org/10.1007/s00190-005-0004-x. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2017. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm. Earth Planets Space 69: 66. https://doi.org/10.1186/s40623-017-0652-0. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I, Redmon RJ. 2015. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather 13: 585–597. https://doi.org/10.1002/2015SW001237. [Google Scholar]
- Dow JM, Neilan RE, Rizos C. 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83: 191–198. https://doi.org/10.1007/s00190-008-0300-3. [CrossRef] [Google Scholar]
- Estey LH, Meertens CM. 1999. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3: 42–49. https://doi.org/10.1007/PL00012778. [CrossRef] [Google Scholar]
- Fabbro V, Jacobsen KS, Andalsvik YL, Rougerie S. 2021. GNSS positioning error forecasting in the Arctic: ROTI and Precise Point Positioning error forecasting from solar wind measurements. J Space Weather Space Clim 11: 43. https://doi.org/10.1051/swsc/2021024. [CrossRef] [EDP Sciences] [Google Scholar]
- Follestad AF, Clausen LBN, Moen JI, Jacobsen KS. 2021. Latitudinal, diurnal, and seasonal variations in the accuracy of an RTK positioning system and its relationship with ionospheric irregularities. Space Weather 19: e2020SW002625. https://doi.org/10.1029/2020SW002625. [CrossRef] [Google Scholar]
- Garner TW, Harris RB, York JA, Herbster CS, Minter CF, Hampton DL. 2011. An auroral scintillation observation using precise, collocated GPS receivers: GPS observation of auroral scintillation. Radio Sci 46: RS1018. https://doi.org/10.1029/2010RS004412. [Google Scholar]
- Guo K, Vadakke Veettil S, Weaver BJ, Aquino M. 2021. Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices. J Geod 95: 30. https://doi.org/10.1007/s00190-021-01475-y. [CrossRef] [Google Scholar]
- Hernandez-Pajares M, Miguel Juan J, Sanz J, Aragon-Angel A, Garcia-Rigo A, Salazar D, Escudero M. 2011. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85: 887–907. https://doi.org/10.1007/s00190-011-0508-5. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Wielgosz P, Paziewski J, Krypiak-Gregorczyk A, Krukowska M, Stepniak K, Kaplon J, Hadas T, Sosnica K, Bosy J, Orus-Perez R, Monte-Moreno E, Yang H, Garcia-Rigo A, Olivares-Pulido G. 2017. Direct MSTID mitigation in precise GPS processing. Radio Sci 52: 321–337. https://doi.org/10.1002/2016RS006159. [CrossRef] [Google Scholar]
- Jacobsen KS, Andalsvik YL. 2016. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J Space Weather Space Clim 6: A9. https://doi.org/10.1051/swsc/2016004. [CrossRef] [EDP Sciences] [Google Scholar]
- Jacobsen KS, Dähnn M. 2014. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J Space Weather Space Clim 4: A27. https://doi.org/10.1051/swsc/2014024. [Google Scholar]
- Ji S, Chen W, Weng D, Wang Z, Ding X. 2013. A study on cycle slip detection and correction in case of ionospheric scintillation. Adv Space Res 51: 742–753. https://doi.org/10.1016/j.asr.2012.10.012. [CrossRef] [Google Scholar]
- Jin Y, Miloch WJ, Moen JI, Clausen LBN. 2018. Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. J Space Weather Space Clim 8: A48. https://doi.org/10.1051/swsc/2018034. [CrossRef] [EDP Sciences] [Google Scholar]
- Juan JM, Sanz J, González-Casado G, Rovira-Garcia A, Camps A, Riba J, Barbosa J, Blanch E, Altadill D, Orus R. 2018. Feasibility of precise navigation in high and low latitude regions under scintillation conditions. J Space Weather Space Clim 8: A05. https://doi.org/10.1051/swsc/2017047. [CrossRef] [EDP Sciences] [Google Scholar]
- Kashani I, Wielgosz P, Grejner-Brzezinska D. 2007. The impact of the ionospheric correction latency on long-baseline instantaneous kinematic GPS positioning. Surv Rev 39: 238–251. https://doi.org/10.1179/175227007X197156. [CrossRef] [Google Scholar]
- Kilpua E, Koskinen HEJ, Pulkkinen TI. 2017. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev Sol Phys 14: 5. https://doi.org/10.1007/s41116-017-0009-6. [CrossRef] [Google Scholar]
- Kouba J. 2015. A guide to using International GNSS Service (IGS) products. https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products. [Google Scholar]
- Lejeune S, Warnant R. 2008. A novel method for the quantitative assessment of the ionosphere effect on high accuracy GNSS applications, which require ambiguity resolution. J Atmos Sol Terr Phys 70: 889–900. https://doi.org/10.1016/j.jastp.2007.01.009. [CrossRef] [Google Scholar]
- Lu Y, Wang Z, Ji S, Chen W. 2020. Assessing the positioning performance under the effects of strong ionospheric anomalies with multi-GNSS in Hong Kong. Radio Sci 55: https://doi.org/10.1029/2019RS007004. [Google Scholar]
- Marques HA, Marques HAS, Aquino M, Veettil SV, Monico JFG. 2018. Accuracy assessment of precise point positioning with multi-constellation GNSS data under ionospheric scintillation effects. J Space Weather Space Clim 8: A15. https://doi.org/10.1051/swsc/2017043. [CrossRef] [EDP Sciences] [Google Scholar]
- Monte-Moreno E, Hernandez-Pajares M, Yang H, Rigo AG, Jin Y, Hoeg P, Miloch WJ, Wielgosz P, Jarmolowski W, Paziewski J, Milanowska B, Hoque M, Perez RO. 2021. Method for forecasting ionospheric electron content fluctuations based on the optical flow algorithm. IEEE Trans Geosci Remote Sensing 60: 1. https://doi.org/10.1109/TGRS.2021.3126888. [Google Scholar]
- Muhammad B, Alberti V, Marassi A, Cianca E, Messerotti M. 2015. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst event. J Space Weather Space Clim 5: A32. https://doi.org/10.1051/swsc/2015034. [CrossRef] [EDP Sciences] [Google Scholar]
- Odijk D, Verhagen S, Teunissen PJG. 2012. Medium-distance GPS ambiguity resolution with controlled failure rate. In: Geodesy for Planet Earth, International Association of Geodesy Symposia. Kenyon S, Pacino MC, Marti U, (Eds.) Springer, Berlin Heidelberg, Berlin, Heidelberg. pp. 745–751. https://doi.org/10.1007/978-3-642-20338-1_93. [CrossRef] [Google Scholar]
- Orus Perez R. 2017. Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum. J Geod 91: 397–407. https://doi.org/10.1007/s00190-016-0971-0. [CrossRef] [Google Scholar]
- Park J, Veettil SV, Aquino M, Yang L, Cesaroni C. 2017. Mitigation of ionospheric effects on GNSS positioning at low latitudes: Ionospheric effect on GNSS positioning. Navigation J Inst Navig 64: 67–74. https://doi.org/10.1002/navi.177. [CrossRef] [Google Scholar]
- Paziewski J. 2022. Multi-constellation single-frequency ionospheric-free precise point positioning with low-cost receivers. GPS Solut 26: 23. https://doi.org/10.1007/s10291-021-01209-9. [CrossRef] [Google Scholar]
- Paziewski J. 2016. Study on desirable ionospheric corrections accuracy for network-RTK positioning and its impact on time-to-fix and probability of successful single-epoch ambiguity resolution. Adv Space Res 57: 1098–1111. https://doi.org/10.1016/j.asr.2015.12.024. [CrossRef] [Google Scholar]
- Paziewski J. 2015. Precise GNSS single epoch positioning with multiple receiver configuration for medium-length baselines: methodology and performance analysis. Meas Sci Technol 26: 035002. https://doi.org/10.1088/0957-0233/26/3/035002. [CrossRef] [Google Scholar]
- Paziewski J, Sieradzki R. 2020. Enhanced wide-area multi-GNSS RTK and rapid static positioning in the presence of ionospheric disturbances. Earth Planets Space 72: 110. https://doi.org/10.1186/s40623-020-01238-7. [CrossRef] [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24: 2283–2286. https://doi.org/10.1029/97GL02273. [Google Scholar]
- Prikryl P, Ghoddousi-Fard R, Weygand JM, Viljanen A, Connors M, Danskin DW, Jayachandran PT, Jacobsen KS, Andalsvik YL, Thomas EG, Ruohoniemi JM, Durgonics T, Oksavik K, Zhang Y, Spanswick E, Aquino M, Sreeja V. 2016. GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015: GPS Scintillation at High Latitudes. J Geophys Res Space Phys 121: 10448–10465. https://doi.org/10.1002/2016JA023171. [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Chadwick R, Kelly TD. 2015. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann Geophys 33: 531–545. https://doi.org/10.5194/angeo-33-531-2015. [CrossRef] [Google Scholar]
- Prochniewicz D, Szpunar R, Kozuchowska J, Szabo V, Staniszewska D, Walo J. 2020. Performance of network-based GNSS positioning services in poland: a case study. J Surv Eng 146: 05020006. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000316. [CrossRef] [Google Scholar]
- Prochniewicz D, Szpunar R, Walo J. 2017. A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Meas Sci Technol 28: 015012. https://doi.org/10.1088/1361-6501/28/1/015012. [CrossRef] [Google Scholar]
- Rebischung P, Altamimi Z, Ray J, Garayt B. 2016. The IGS contribution to ITRF2014. J Geod 90: 611–630. https://doi.org/10.1007/s00190-016-0897-6. [CrossRef] [Google Scholar]
- Saastamoinen J. 1973. Contributions to the theory of atmospheric refraction: Part II. Refraction corrections in satellite geodesy. Bull Geodesique 107: 13–34. https://doi.org/10.1007/BF02522083. [CrossRef] [Google Scholar]
- Sato H, Jakowski N, Berdermann J, Jiricka K, Heßelbarth A, Banyś D, Wilken V. 2019. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies. Space Weather 17: 816–826. https://doi.org/10.1029/2019SW002198. [CrossRef] [Google Scholar]
- Sieradzki R, Paziewski J. 2022. Towards a Reliable Ionospheric Polar Patch Climatology With Ground-Based GNSS. IEEE Trans. Geosci Remote Sens. 60: 5802614. https://doi.org/10.1109/TGRS.2022.3149635. [CrossRef] [Google Scholar]
- Sieradzki R, Paziewski J. 2016. Study on reliable GNSS positioning with intense TEC fluctuations at high latitudes. GPS Solut 20: 553–563. https://doi.org/10.1007/s10291-015-0466-0. [CrossRef] [Google Scholar]
- Sterle O, Stopar B, Pavlovčič Prešeren P. 2015. Single-frequency precise point positioning: an analytical approach. J Geod 89: 793–810. https://doi.org/10.1007/s00190-015-0816-2. [CrossRef] [Google Scholar]
- Susi M, Andreotti M, Aquino M, Dodson A. 2017. Tuning a Kalman filter carrier tracking algorithm in the presence of ionospheric scintillation. GPS Solut 21: 1149–1160. https://doi.org/10.1007/s10291-016-0597-y. [CrossRef] [Google Scholar]
- Vadakke Veettil S, Aquino M, Marques HA, Moraes A. 2020. Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J Geod 94: 15. https://doi.org/10.1007/s00190-020-01345-z. [CrossRef] [Google Scholar]
- van der Meeren C, Oksavik K, Lorentzen D, Moen JI, Romano V. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J Geophys Res Space Phys 119: 8624–8636. https://doi.org/10.1002/2014JA020114. [CrossRef] [Google Scholar]
- Villiger A, Schaer S, Dach R, Prange L, Sušnik A, Jäggi A. 2019. Determination of GNSS pseudo-absolute code biases and their long-term combination. J Geod 93: 1487–1500. https://doi.org/10.1007/s00190-019-01262-w. [CrossRef] [Google Scholar]
- Wang J, Stewart MP, Tsakiri M. 1998. A discrimination test procedure for ambiguity resolution on-the-fly. J Geod 72: 644–653. https://doi.org/10.1007/s001900050204. [CrossRef] [Google Scholar]
- Wang Y, Zhang Q-H, Jayachandran PT, Lockwood M, Zhang S-R, Moen J, Xing Z-Y, Ma Y-Z, Lester M. 2016. A comparison between large-scale irregularities and scintillations in the polar ionosphere. Geophys Res Lett 43: 4790–4798. https://doi.org/10.1002/2016GL069230. [CrossRef] [Google Scholar]
- Wanninger L. 2004. Ionospheric disturbance indices for RTK and network RTK positioning. In: Presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, pp. 849–2854. [Google Scholar]
- Wielgosz P, Kashani I, Grejner-Brzezinska D. 2005. Analysis of long-range network RTK during a severe ionospheric storm. J Geod 79: 524–531. https://doi.org/10.1007/s00190-005-0003-y. [CrossRef] [Google Scholar]
- Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM. 1992. Effects of antenna orientation on GPS carrier phase. Astrodynamics 1991: 1647–1660. [Google Scholar]
- Xu R, Liu Z, Chen W. 2015. Improved FLL-assisted PLL with in-phase pre-filtering to mitigate amplitude scintillation effects. GPS Solut 19: 263–276. https://doi.org/10.1007/s10291-014-0385-5. [CrossRef] [Google Scholar]
- Yang Z, Morton YTJ, Zakharenkova I, Cherniak I, Song S, Li W. 2020. Global View of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St. Patrick’s Day Storm. J Geophys Res Space Phys 125: e2019JA027681. https://doi.org/10.1029/2019JA027681. [Google Scholar]
- Yunck T. 1996. Orbit determination. In: Global Positioning System —Theory and Applications. Parkinson BW, Spilker JJ, (Eds.), AIAA: Washington DC, USA. [Google Scholar]
- Zhang B, Teunissen PJG, Yuan Y, Zhang H, Li M. 2018. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. J Geod 92: 401–413. https://doi.org/10.1007/s00190-017-1071-5. [CrossRef] [Google Scholar]
- Zhao C, Zhang B, Zhang X. 2021. SUPREME: an open-source single-frequency uncombined precise point positioning software. GPS Solut 25: 86. https://doi.org/10.1007/s10291-021-01131-0. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.