Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 34 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2022030 | |
Published online | 12 October 2022 |
- Amorim D, Pimenta A, Bittencourt J, Fagundes P. 2011. Long-term study of medium-scale traveling ionospheric disturbances using OI 630 nm all-sky imaging and ionosonde over Brazilian low latitudes. J Geophys Res Space Phys 116(A6). https://doi.org/10.1029/2010JA016090. [Google Scholar]
- Baskaradas JA, Bianchi S, Pietrella M, Pezzopane M, Sciacca U, Zuccheretti E. 2014. Description of ionospheric disturbances observed by Vertical Ionospheric Sounding at 3 MHz. Ann Geophys 57(1): A0187. https://doi.org/10.4401/ag-6345. [Google Scholar]
- Basu S, Weber E, Bullett T, Keskinen M, MacKenzie E, Doherty P, Sheehan R, Kuenzler H, Ning P, Bongiolatti J. 1998. Characteristics of plasma structuring in the cusp/cleft region at Svalbard. Radio Sci 33(6): 1885–1899. https://doi.org/10.1029/98RS01597. [CrossRef] [Google Scholar]
- Brisken WF, Macquart J-P, Gao J-J, Rickett B, Coles W, Deller A, Tingay S, West C. 2009. 100 μas resolution VLBI imaging of anisotropic interstellar scattering toward pulsar B0834+ 06. Astrophys J 708(1): 232. https://doi.org/10.1088/0004-637X/708/1/232. [Google Scholar]
- Carilli C, Perley R, Dreher J, Leahy J. 1991. Multifrequency radio observations of Cygnus A – Spectral aging in powerful radio galaxies. Astrophys J 383: 554–573. https://doi.org/10.1086/170813. [CrossRef] [Google Scholar]
- Carrano CS, Retterer JM, Groves KM, Crowley G, Duly TM, Hunton DE. 2020. Wave-optics analysis of HF propagation through traveling ionospheric disturbances and developing plasma bubbles. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, IEEE, pp. 1–4. https://doi.org/10.23919/URSIGASS49373.2020.9232348. [Google Scholar]
- Chao-Song H, Jun L. 1991. Weak nonlinear theory of the ionospheric response to atmospheric gravity waves in the F-region. J Atmos Sol Terr Phys 53(10): 903–908. https://doi.org/10.1016/0021-9169(91)90003-P. [CrossRef] [Google Scholar]
- Cordes JM, Rickett BJ, Stinebring DR, Coles WA. 2006. Theory of parabolic arcs in interstellar scintillation spectra. Astrophys J 637(1): 346. https://doi.org/10.1086/498332. [CrossRef] [Google Scholar]
- de Gasperin F, Mevius M, Rafferty D, Intema H, Fallows R. 2018. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. A&A 615: A179. https://doi.org/10.1051/0004-6361/201833012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- de Gasperin F, Vink J, McKean J, Asgekar A, Avruch I, et al. 2020. Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies. A&A 635: A150. https://doi.org/10.1051/0004-6361/201936844. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ding M, Tong P, Wei Y, Yu L. 2021. Multiple phase screen modeling of HF wave field scintillations caused by the irregularities in inhomogeneous media. Radio Sci 56(4): e2020RS007,239. https://doi.org/10.1029/2020RS007239. [CrossRef] [Google Scholar]
- Fallows R, Bisi MM, Forte B, Ulich T, Konovalenko A, Mann G, Vocks C. 2016. Separating nightside interplanetary and ionospheric scintillation with LOFAR. Astrophys J Lett 828(1): L7. https://doi.org/10.3847/2041-8205/828/1/L7. [CrossRef] [Google Scholar]
- Fallows RA, Forte B, Astin I, Allbrook T, Arnold A, et al. 2020. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. J Space Weather Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Fedorenko YP, Fedorenko V, Lysenko V. 2011. Parameters of the medium-scale traveling ionospheric disturbances model deduced from measurements. Geomagn Aeron 51(1): 88–104. https://doi.org/10.1134/S0016793210061015. [CrossRef] [Google Scholar]
- Habarulema JB, Katamzi ZT, McKinnell L-A. 2013. Estimating the propagation characteristics of large-scale traveling ionospheric disturbances using ground-based and satellite data. J Geophys Res Space Phys 118(12): 7768–7782. https://doi.org/10.1002/2013JA018997. [CrossRef] [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11): 1441–1481. [CrossRef] [Google Scholar]
- Hocke K, Igarashi K. 2003. Wave-optical simulation of the oblique HF radio field. Radio Sci 38(3): 1039. https://doi.org/10.1029/2002RS002691. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Ivanova V, Kurkin V, Polekh N, Chistyakova L, Brynko I, Chuyev V, Dumbrava Z, Poddelskii I. 2011. Studying large-scale traveling ionospheric disturbances according to the data of oblique-incidence sounding. Geomagn Aeron 51(8): 1101–1104. https://doi.org/10.1134/S0016793211080196. [CrossRef] [Google Scholar]
- Kirchengast G. 1997. Characteristics of high-latitude TIDs from different causative mechanisms deduced by theoretical modeling. J Geophys Res Space Phys 102(A3): 4597–4612. https://doi.org/10.1029/96JA03294. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Stanislavsky A, Kashcheyev A, Zhang Q-H. 2018. Simulation of focusing effect of traveling ionospheric disturbances on meter-decameter solar dynamic spectra. J Geophys Res Space Phys 123(11): 8940–8950. https://doi.org/10.1029/2018JA025584. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Stanislavsky A, Zhang Q-H. 2017. Traveling ionospheric disturbances as huge natural lenses: Solar radio emission focusing effect. J Geophys Res Space Phys 122(9): 9092–9101. https://doi.org/10.3847/1538-4357/ab1b52. [CrossRef] [Google Scholar]
- Koval A, Chen Y, Tsugawa T, Otsuka Y, Shinbori A, et al. 2019. Direct observations of traveling ionospheric disturbances as focusers of solar radiation: Spectral caustics. Astrophys J 877(2): 98. https://doi.org/10.3847/1538-4357/ab1b52. [CrossRef] [Google Scholar]
- Kuiack MJ, Wijers RA, Shulevski A, Rowlinson A. 2021. Apparent radio transients mapping the near-Earth plasma environment. Mon Notices Royal Astron Soc 504(4): 4706–4715. https://doi.org/10.1093/mnras/stab1156. [CrossRef] [Google Scholar]
- Lan J, Ning B, Li G, Zhu Z, Hu L, Sun W. 2018. Observation of short-period ionospheric disturbances using a portable digital ionosonde at Sanya. Radio Sci 53(12): 1521–1532. https://doi.org/10.1029/2018RS006699. [CrossRef] [Google Scholar]
- Ludwig-Barbosa V, Rasch J, Carlström A, Pettersson MI, Vu VT. 2019. GNSS Radio Occultation simulation using multiple phase screen orbit sampling. IEEE Geosci Remote Sens Lett 17(8): 1323–1327. https://doi.org/10.1109/LGRS.2019.2944537. [Google Scholar]
- Mevius M, van der Tol S, Pandey V, Vedantham H, Brentjens M, et al. 2016. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci 51(7): 927–941. https://doi.org/10.1002/2016RS006028. [CrossRef] [Google Scholar]
- Meyer-Vernet N. 1980. On a day-time ionospheric effect on some radio intensity measurements and interferometry. A&A 84: 142–147. [Google Scholar]
- Meyer-Vernet N, Daigne G, Lecacheux A. 1981. Dynamic spectra of some terrestrial ionospheric effects at decametric wavelengths – Applications in other astrophysical contexts. A&A 96: 296–301. [Google Scholar]
- Nekrasov A, Shalimov S. 2002. Nonlinear structures of internal gravitational waves and their effect on the ionosphere. Cosm Res 40(5): 517–520. https://doi.org/10.1023/A:1020655219614. [CrossRef] [Google Scholar]
- Nekrasov A, Shalimov S, Shukla P, Stenflo L. 1995. Nonlinear disturbances in the ionosphere due to acoustic gravity waves. J Atmos Sol Terr Phys 57(7): 737–741. https://doi.org/10.1016/0021-9169(94)00052-P. [CrossRef] [Google Scholar]
- Oinats AV, Nishitani N, Ponomarenko P, Berngardt OI, Ratovsky KG. 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planets Space 68(1): 1–13. https://doi.org/10.1186/s40623-016-0390-8. [CrossRef] [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa A. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31: 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planets Space 63(4): 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Rino C, Gonzalez V, Hessing A. 1981. Coherence bandwidth loss in transionospheric radio propagation. Radio Sci 16(02): 245–255. https://doi.org/10.1029/RS016i002p00245. [CrossRef] [Google Scholar]
- Skrutskie M, Cutri R, Stiening R, Weinberg M, Schneider S, et al. 2006. The two micron all sky survey (2MASS). Astron J 131(2): 1163–1183. https://doi.org/10.1086/498708. [CrossRef] [Google Scholar]
- Sokolovskiy SV. 2001. Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci 36(3): 441–458. https://doi.org/10.1029/1999RS002273. [CrossRef] [Google Scholar]
- Terra P, Vargas F, Brum CG, Miller ES. 2020. Geomagnetic and solar dependency of MSTIDs occurrence rate: A climatology based on airglow observations from the Arecibo Observatory ROF. J Geophys Res Space Phys 125(7): e2019JA027,770. https://doi.org/10.1029/2019JA027770. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, Prikryl P, Reid B, Wood A, Jayachandran P. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga Volcanic Eruption. Geophys Res Lett 49(7): e2022GL098,158. https://doi.org/10.1029/2022GL098158. [CrossRef] [Google Scholar]
- Tokumaru M, Fujiki K, Iwai K, Tyul’bashev S, Chashei I. 2019. Coordinated interplanetary scintillation observations in Japan and Russia for coronal mass ejection events in early September 2017. Sol Phys 294(7): 1–15. https://doi.org/10.1007/s11207-019-1487-6. [CrossRef] [Google Scholar]
- van de Kamp M, Pokhotelov D, Kauristie K. 2014. TID characterised using joint effort of incoherent scatter radar and GPS. Ann Geophys 32: 1511–1532. https://doi.org/10.5194/angeo-32-1511-2014. [CrossRef] [Google Scholar]
- van Haarlem MP, Wise MW, Gunst A, Heald G, McKean JP, et al. 2013. LOFAR: The low-frequency array. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang C, Zhang M, Xu Z-W, Chen C, Guo L-X. 2014. Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere. IEEE Trans Geosci Remote Sens 53(6): 3442–3451. https://doi.org/10.1109/TGRS.2014.2376957. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.