Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2022028 | |
Published online | 02 September 2022 |
- Aa E, Zou S, Liu S. 2020. Statistical analysis of equatorial plasma irregularities retrieved from Swarm 2013–2019 observations. J Geophys Res Space Phys 125: e2019JA027022. https://doi.org/10.1029/2019JA027022. [Google Scholar]
- Aarons J, DasGupta A. 1984. Equatorial scintillations during the major magnetic storm of April 1981. Radio Sci 19(3): 731–739. https://doi.org/10.1029/RS019i003p00731. [CrossRef] [Google Scholar]
- Aarons J. 1991. The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci 26: 1131–1149. https://doi.org/10.1029/91RS00473. [CrossRef] [Google Scholar]
- Abdu MA, Bittencourt JA, Batista IS. 1981. Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J Geophys Res 86: 11443–11446. https://doi.org/10.1029/JA086iA13p11443. [CrossRef] [Google Scholar]
- Abdu MA. 1997. Major phenomena of the equatorial ionosphere–thermosphere system under disturbed conditions. J Atmos Sol Terr Phys 13: 1505–1519. [CrossRef] [Google Scholar]
- Abdu MA, Batista IS, Takahashi H, MacDougall J, Sobral JHA, Medeiros AF, Trivedi NB. 2003. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. J Geophys Res 108: A12. https://doi.org/10.1029/2002JA009721. [Google Scholar]
- Abdu MA, Iyer KN, de Medeiros RT, Batista IS, Sobral JHA. 2006. Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys Res Lett 33(L07106): 1–4. [Google Scholar]
- Abdu MA. 2012. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J Atmos Sol Terr Phys 75(76): 44–56. [CrossRef] [Google Scholar]
- Abdu MA. 2016. Electrodynamics of ionospheric weather over low latitudes. Geosci Lett 3(1): 11. https://doi.org/10.1186/s40562-016-0043-6. [CrossRef] [Google Scholar]
- Abdu MA. 2019. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog Earth Planet Sci 6: 11. https://doi.org/10.1186/s40645-019-0258-1. [CrossRef] [Google Scholar]
- Amaechi PO, Oyeyemi EO, Akala AO, Amory-Mazaudier C. 2020. Geomagnetic activity control of irregularities occurrences over the crests of the African EIA. Earth Space Sci 7: e2020EA001183. https://doi.org/10.1029/2020EA001183. [CrossRef] [Google Scholar]
- Basu B. 1997. Generalized Rayleigh–Taylor instability in the presence of time-dependent equilibrium. J Geophys Res Space Phys 102(A8): 17305–17312. https://doi.org/10.1029/97ja01239. [CrossRef] [Google Scholar]
- Basu S, et al. 2001. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J Geophys Res 106(A12): 30389–30413. https://doi.org/10.1029/2001JA001116. [CrossRef] [Google Scholar]
- Blanc M, Richmond AD. 1980. The ionospheric disturbance dynamo. J Geophys Res 85: 1669–1686. [CrossRef] [Google Scholar]
- Blewitt G. 1990. An automatic editing algorithm for GPS data. Geophys Res Lett 17(3): 199–202. https://doi.org/10.1029/GL017i003p00199. [CrossRef] [Google Scholar]
- Bolaji OS, Adebiyi SJ, Fashae JB. 2018. Characterization of ionospheric irregularities at different longitudes during quiet and disturbed geomagnetic conditions. J Atmos Sol Terr Phys 182: 93–100. https://doi.org/10.1016/j.jastp.2018.11.007. [Google Scholar]
- Booker HG, Wells HW. 1938. Scattering of radio waves by the F-region of the ionosphere. J Geophys Res 43(3): 249–256. https://doi.org/10.1029/TE043i003p00249. [CrossRef] [Google Scholar]
- Bowmann GG. 1978. A relationship between polar magnetic substorms ionospheric height rises and the occurrence of Spread-F. J Atmos Sol Terr Phys 40: 713–722. https://doi.org/10.1016/0021-9169(78)90129-0. [CrossRef] [Google Scholar]
- Burke WJ. 1979. Plasma bubbles near the dawn terminator in the topside ionosphere. Planet Space Sci 27: 1187–1193. https://doi.org/10.1016/0032-0633(79)90138-7. [CrossRef] [Google Scholar]
- Burke WJ, Gentile LC, Huang CY, Valladares CE, Su SY. 2004. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res 109: A12301. https://doi.org/10.1029/2004JA010583. [CrossRef] [Google Scholar]
- Chau JL, Woodman RF. 2001. Interferometric and dual beam observations of daytime Spread-F-like irregularities over Jicamarca. Geophys Res Lett 28: 3581–3584. https://doi.org/10.1029/2001GL013404. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2016. High-latitude ionospheric irregularities: Differences between ground- and space-based GPS measurements during the 2015 St. Patrick’s Day storm. Earth Planets Space 68(1): 136. https://doi.org/10.1186/s40623-016-0506-1. [CrossRef] [Google Scholar]
- Choi KR, Lightsey EG. 2008. Estimation of total electron content (TEC) using spaceborne GPS measurements. J Astronaut Sci 56: 375–399. https://doi.org/10.1007/BF03256559. [CrossRef] [Google Scholar]
- Davis MJ. 1971. On polar substorms as the source of large-scale traveling ionospheric disturbances. J Geophys Res (1896-1977) 76(19): 4525–4533. https://doi.org/10.1029/JA076i019p04525. [CrossRef] [Google Scholar]
- Eccles JV, Maurice JPS, Schunk RW. 2015. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J Geophys Res Space Phys 120: 4950–4970. https://doi.org/10.1002/2014JA020664. [CrossRef] [Google Scholar]
- Farley DT, Bonelli E, Fejer BG, Larsen ME. 1986. The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J Geophys Res 91: 13723–13728. [CrossRef] [Google Scholar]
- Fejer BG, Farley DT, Balsley BB, Woodman RF. 1976. Radar studies of anomalous velocity reversals in the equatorial ionosphere. J Geophys Res 81(25): 4621–4626. https://doi.org/10.1029/JA081i025p04621. [CrossRef] [Google Scholar]
- Fejer BG, Scherliess L. 1995. Time-dependent response of equatorial ionospheric electric field to magnetospheric disturbances. Geophys Res Lett 22(7): 851–854. https://doi.org/10.1029/95gl00390. [CrossRef] [Google Scholar]
- Fejer BG, Scherliess L. 1998. Mid- and low-latitude prompt-penetration ionospheric zonal plasma drifts. Geophys Res Lett 25(16): 3071–3074. https://doi.org/10.1029/98gl02325. [CrossRef] [Google Scholar]
- Foelsche U, Kirchengast G. 2002. A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett 29(10): 111-1–111-4. https://doi.org/10.1029/2001gl013744. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Hulot G. 2006. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58: 351–358. [CrossRef] [Google Scholar]
- Greenspan ME, Rasmussen CE, Burke WJ, Abdu MA. 1991. Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. J Geophys Res Space Phys 96(A8): 13931–13942. https://doi.org/10.1029/91ja01264. [CrossRef] [Google Scholar]
- Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, Thomas EC, et al. 1995. DARN/SuperDARN: A global view of the dynamics of high-latitude convection. Space Sci Rev 71(1–4): 761–796. https://doi.org/10.1007/BF00751350. [CrossRef] [Google Scholar]
- Heelis RA, Kendall PC, Moffet RJ, Windle DW, Rishbeth H. 1974. Electrical coupling of the E- and F-regions and its effects on the F region drifts and winds. Planet Space Sci 22: 743–756. https://doi.org/10.1016/0032-0633(74)90144-5. [CrossRef] [Google Scholar]
- Huang CY, Burke WJ, Machuzak JS, Gentile LC, Sultan PJ. 2001. DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum. J Geophys Res Space Phys 106(A5): 8131–8142. https://doi.org/10.1029/2000ja000319. [CrossRef] [Google Scholar]
- Huang CY, Burke WJ, Machuzak JS, Gentile LC, Sultan PJ. 2002. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology. J Geophys Res Space Phys 107(A12): SIA 7-1–SIA 7-10. https://doi.org/10.1029/2002ja009452. [CrossRef] [Google Scholar]
- Huang C-S, de La Beaujardiere O, Roddy PA, Hunton DE, Ballenthin JO, Hairston MR. 2013. Long-lasting daytime plasma bubbles observed by the C/NOFS satellite. J Geophys Res Space Phys 118: 2398–2408. [CrossRef] [Google Scholar]
- Huang C-S, de La Beaujardiere O, Roddy PA, Hunton DE, Liu JY, Chen SP. 2014. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). J Geophys Res Space Phys 119: 1186–1199. https://doi.org/10.1002/2013JA019212. [CrossRef] [Google Scholar]
- Huang FQ, Lei JH, Xiong C, Zhong JH, Li GZ. 2021. Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016. Earth Planet Phys 5(5): 1–10. https://doi.org/10.26464/epp2021043. [CrossRef] [Google Scholar]
- Hysell DL, Burcham JD. 1998. JULIA radar studies of equatorial spread F. J Geophys Res 103(A12): 29155–29167. https://doi.org/10.1029/98JA02655. [CrossRef] [Google Scholar]
- Hysell DL, Kudeki E. 2004. Collisional shear instability in the equatorial F region ionosphere. J Geophys Res 109: A11301. https://doi.org/10.1029/2004JA010636. [CrossRef] [Google Scholar]
- Jimoh O, Lei J, Zhong J, Owolabi C, Luan X, Dou X. 2019. Topside ionospheric conditions during the 7–8 September 2017 Geomagnetic storm. J Geophys Res Space Phys 124(11): 9381–9404. https://doi.org/10.1029/2019ja026590. [CrossRef] [Google Scholar]
- Jin H, Zou S, Chen G, Yan C, Zhang S, Yang G. 2018. Formation and evolution of low-latitude F region field-aligned irregularities during the 7–8 September 2017 storm: Hainan coherent scatter phased array radar and digisonde observations. Space Weather 16: 648–659. https://doi.org/10.1029/2018SW001865. [CrossRef] [Google Scholar]
- Jin Y, Spicher A, Xiong C, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2019. Ionospheric plasma irregularities characterized by the Swarm satellites: Statistics at high latitudes. J Geophys Res Space Phys 124: 1262–1282. https://doi.org/10.1029/2018JA026063. [CrossRef] [Google Scholar]
- Kelley MC. 2009. The Earth’s ionosphere plasma physics and electrodynamics, 2nd edn. Academic Press, San Diego, CA. [Google Scholar]
- Kikuchi T, Luehr H, Schlegel K, Tachihara H, Shinohara M, Kitamura TI. 2000. Penetration of auroral electric fields to the equator during a substorm. J Geophys Res 105: 23251–23261. https://doi.org/10.1186/s40562-016-0035-6. [CrossRef] [Google Scholar]
- Kil H, Heelis RA. 1998. Global distribution of density irregularities in the equatorial ionosphere. J Geophys Res 103(A1): 407–417. [CrossRef] [Google Scholar]
- Kumar S, Chen W, Liu Z, Ji S. 2016. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong. J Geophys Res Space Phys 121: 9164–9178. https://doi.org/10.1002/2016JA022873. [CrossRef] [Google Scholar]
- Lei J, Wang W, Burns AG, Yue X, Dou X, Luan X, Solomon SC, Liu YC-M. 2014. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations. J Geophys Res Space Phys 119: 2298–2317. https://doi.org/10.1002/2013JA019575. [CrossRef] [Google Scholar]
- Li G, Ning B, Hu L, Liu L, Yue X, et al. 2010. Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J Geophys Res 115: A04304. https://doi.org/10.1029/2009JA014830. [Google Scholar]
- Li G, Otsuka Y, Ning B, Abdu MA, Yamamoto M, Wan W, Liu L, Abadi P. 2016. Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophys Res Letts 43: 2389–2395. https://doi.org/10.1002/2016GL068145. [CrossRef] [Google Scholar]
- Li G, Ning B, Abdu MA, Wang C, Otsuka Y, Wan W, Lei J, Nishioka M, Tsugawa T, Hu L, et al. 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog Earth Planet Sci 5: 11. [CrossRef] [Google Scholar]
- Li Q, Zhu Y, Fang K, Fang J. 2020. Statistical study of the seasonal variations of TEC depletion and the ROTI during 2013–2019 over Hong Kong. Sensor 20: 6200. https://doi.org/10.3390/s20216200. [CrossRef] [Google Scholar]
- Luo W, Xiong C, Xu J, Zhu Z, Chang S. 2020. The low-latitude plasma irregularities after sunrise from multiple observations in both hemispheres during the recovery phase of a storm. Remote Sens 12: 2897. https://doi.org/10.3390/rs12182897. [CrossRef] [Google Scholar]
- Makela JJ, Miller ES. 2008. Optical observations of the growth and day-to-day variability of equatorial plasma bubbles. J Geophys Res 113: A03307. https://doi.org/10.1029/2007JA012661. [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. https://doi.org/10.1029/97rs02707. [CrossRef] [Google Scholar]
- Maruyama T. 1988. A diagnostic model for equatorial spread F, 1. Model description and application to electric field and neutral wind effects. J Geophys Res 93(A12): 14611–14622. [CrossRef] [Google Scholar]
- McClure JP, Hanson WB, Hoffman JF. 1977. Plasma bubbles and irregularities in the equatorial J. equatorial ionosphere. J Geophys Res 82: 2650. [CrossRef] [Google Scholar]
- McClure JP, Singh S, Bamgboye DK, Johnson FS, Kil H. 1998. Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding. J Geophys Res 103(A12): 29119–29135. [CrossRef] [Google Scholar]
- Oladipo OA, Schüler T. 2013. Equatorial ionospheric irregularities using GPS TEC derived index. J Atmos Sol Terr Phys 92: 78–82. [CrossRef] [Google Scholar]
- Oya H, Takahashi T, Watanabe S. 1986. Observation of low latitude ionosphere by the impedance probe on board the Hinotori satellite. J Geomag Geoelectr 38: 111–123. [CrossRef] [Google Scholar]
- Park J, Stolle C, Xiong C, Lühr H, Pfaff RF, Buchert S, Martinis CR. 2015. A dayside plasma depletion observed at midlatitudes during quiet geomagnetic conditions. Geophys Res Lett 42: 967–974. https://doi.org/10.1002/2014GL062655. [CrossRef] [Google Scholar]
- Park J, Kil H, Stolle C, Lühr H, Coley WR, Coster A, Kwak YS. 2016. Daytime midlatitude plasma depletions observed by Swarm: Topside signatures of the rocket exhaust. Geophys Res Lett 43: 1802–1809. [CrossRef] [Google Scholar]
- Park J, Heelis R, Chao CK. 2021. Ion velocity and temperature variation around topside nighttime irregularities: Contrast between low and mid-latitude regions. J Geophys Res Space Phys 126: e2020JA028810. https://doi.org/10.1029/2020JA028810. [Google Scholar]
- Pi X, Mannucci A, Lindqwister U, Ho C. 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18): 2283–2286. https://doi.org/10.1029/97GL02273. [CrossRef] [Google Scholar]
- Pradipta R, Valladares CE, Doherty PH. 2015. An effective TEC data detrending method for the study of equatorial plasma bubbles and traveling ionospheric disturbances. J Geophys Res Space Phys 120: 11048–11055. https://doi.org/10.1002/2015JA021723. [Google Scholar]
- Richmond AD, Peymirat C, Roble RG. 2003. Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere–ionosphere–thermosphere model. J Geophys Res 108(A3): 1118. https://doi.org/10.1029/2002JA009758. [CrossRef] [Google Scholar]
- Rishbeth H. 1971. Polarization fields produced by winds in the equatorial F-region. Planet Space Sci 19: 357–369. https://doi.org/10.1016/0032-0633(71)90098-5. [CrossRef] [Google Scholar]
- Rottger J. 1981. Equatorial spread F by electric field and atmospheric gravity wave generated by thunderstorms. J Atmos Terr Phys 43: 453. https://doi.org/10.1016/0021-9169(81)90108-2. [CrossRef] [Google Scholar]
- Seemala GK, Valladares CE. 2011. Statistics of TEC depletions observed over the South American continent for the year 2008. Radio Sci 46: RS5019. https://doi.org/10.1029/2011RS004722. [Google Scholar]
- Stolle C, Lühr H, Fejer BG. 2008. Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann Geophys 26(12): 3979–3988. https://doi.org/10.5194/angeo-26-3979-2008. [CrossRef] [Google Scholar]
- Stolle C, Lühr H, Rother M, Balasis G. 2006. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111: A02304. https://doi.org/10.1029/2005JA011184. [Google Scholar]
- Su S-Y, Chao CK, Liu CH. 2008. On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities. J Geophys Res 113: A05307. https://doi.org/10.1029/2007JA012809. [Google Scholar]
- Su SY, Liu CH, Chao CK. 2018. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices. Adv Space Res 61(7): 1628–1635. https://doi.org/10.1016/j.asr.2017.07.005. [CrossRef] [Google Scholar]
- Sultan PJ. 1996. Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread-F. J Geophys Res Space Phys 101(A12): 26875–26891. https://doi.org/10.1029/96ja00682. [CrossRef] [Google Scholar]
- Sun YY, Liu JY, Lin CH. 2012. A statistical study of low latitude F region irregularities at Brazilian longitudinal sector response to geomagnetic storms during post-sunset hours in solar cycle 23. J Geophys Res 117: A03333. https://doi.org/10.1029/2011JA017419. [Google Scholar]
- Tapley BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31: L09607. https://doi.org/10.1029/2004GL019920. [Google Scholar]
- Tsunoda RT. 2010. On seeding equatorial spread F during solstices. Geophys Res Lett 37: L05102. https://doi.org/10.1029/2010GL042576. [Google Scholar]
- Tulasi Ram S, Ajith KK, Yamamoto M, Otsuka Y, Yokoyama T, Niranjan K, Gurubaran S. 2015. Fresh and evolutionary-type field-aligned irregularities generated near sunrise terminator due to overshielding electric fields. J Geophy Res Space Phys 120: 5922–5930. [CrossRef] [Google Scholar]
- Walach M-T, Grocott A. 2019. SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving. J Geophys Res Space Phys 124: 5828–5847. https://doi.org/10.1029/2019JA026816. [CrossRef] [Google Scholar]
- Wan X, Xiong C, Rodriguez-Zuluaga J, Kervalishvili GN, Stolle C, Wang H. 2018. Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite. J Geophys Res Space Phys 123: 3014–3026. https://doi.org/10.1002/2017JA025072. [CrossRef] [Google Scholar]
- Wan X, Xiong C, Wang H, Zhang K, Zheng Z, He Y, Yu L. 2019. A statistical study on the climatology of the equatorial plasma depletions occurrence at topside ionosphere during geomagnetic disturbed periods. J Geophys Res Space Phys 124: https://doi.org/10.1029/2019JA026926. [Google Scholar]
- Watanabe S, Oya H. 1986. Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite. J Geomag Geoelectr 38: 111–123. [CrossRef] [Google Scholar]
- Woodman RF, La Hoz C. 1976. Radar observations of F-region equatorial irregularities. J Geophys Res 81(31): 5447–5466. https://doi.org/10.1029/JA081i031p05447. [CrossRef] [Google Scholar]
- Xiong C, Park J, Lühr H, Stolle C, Ma SY. 2010. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann Geophys 28: 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010. [CrossRef] [Google Scholar]
- Yizengaw E, Retterer J, Pacheco EE, Roddy P, Groves K, Caton R, Baki P. 2013. Postmidnight bubbles and scintillations in the quiet-time June solstice. Geophys Res Lett 40: 5592–5597. https://doi.org/10.1002/2013GL058307. [CrossRef] [Google Scholar]
- Yizengaw E, Groves KM. 2018. Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics. Space Weather 16: 946–968. https://doi.org/10.1029/2018SW001980. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo YH. 2011. Quantitative evaluation of the low Earth orbit satellite-based slant total electron content determination. Space Weather 9(9): S09001. https://doi.org/10.1029/2011sw000687. [Google Scholar]
- Zakharenkova I, Astafyeva E. 2015. Topside ionospheric irregularities as seen from multi-satellite observations. J Geophys Res Space Phys 120(1): 807–824. https://doi.org/10.1002/2014ja020330. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2015. Early morning irregularities detected with spaceborne GPS measurements in the topside ionosphere: A multi-satellite case study. J Geophys Res Space Phys 120(10): 8817–8834. https://doi.org/10.1002/2015ja021447. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planets Space 68(1): 120. https://doi.org/10.1186/s40623-016-0490-5. [CrossRef] [Google Scholar]
- Zakharenkova I, Cherniak I. 2018. Underutilized spaceborne GPS observations for space weather monitoring. Space Weather 16(4): 345–362. https://doi.org/10.1002/2017sw001756. [CrossRef] [Google Scholar]
- Zhong J, Lei J, Dou X, Yue X. 2016a. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut 20: 313–319. https://doi.org/10.1007/S10291-015-0437-5. [CrossRef] [Google Scholar]
- Zhong J, Lei J, Yue X, Dou X. 2016b. Determination of differential code bias of GNSS receiver onboard low earth orbit satellite. IEEE Trans Geosci Remote Sens 54(8): 4896–4905. https://doi.org/10.1109/TGRS.2016.2552542. [CrossRef] [Google Scholar]
- Zhong J, Lei J, Dou X, Yue X. 2016c. Assessment of vertical TEC mapping functions for space-based GNSS observations. GPS Solut 20: 353–362. https://doi.org/10.1007/S10291-015-0444-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.