Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/swsc/2022032 | |
Published online | 21 October 2022 |
- Albee P, Kanellakos D. 1968. A spatial model of the F-region ionospheric traveling disturbance following a low-altitude nuclear explosion. J Geophys Res 73(3): 1039–1053. https://doi.org/10.1029/JA073i003p01039. [CrossRef] [Google Scholar]
- Altadill D, Segarra A, Blanch E, Juan JM, Paznukhov VV, Buresova D, Galkin I, Reinisch BW, Belehaki A. 2020. A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: first results. J Space Weather Space Clim 10: 2. https://doi.org/10.1051/swsc/2019042. [CrossRef] [EDP Sciences] [Google Scholar]
- Astafyeva E. 2019. Ionospheric detection of natural hazards. Rev Geophys 57(4): 1265–1288. https://doi.org/10.1029/2019RG000668. [CrossRef] [Google Scholar]
- Barry GH, Griffiths LJ, Taenzer JC. 1966. HF radio measurements of high-altitude acoustic waves from a ground-level explosion. J Geophys Res 71(17): 4173–4182. https://doi.org/10.1029/jz071i017p04173. [CrossRef] [Google Scholar]
- Belehaki A, Tsagouri I, Altadill D, Blanch E, Borries C, et al. 2020. An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project. J Space Weather Space Clim 10: 42. https://doi.org/10.1051/swsc/2020043. [CrossRef] [EDP Sciences] [Google Scholar]
- Blanc E. 1985. Observations in the upper atmosphere of infrasonic waves from natural or artificial sources – a summary. Ann Geophys 3: 673–687. [Google Scholar]
- Borries C, Jakowski N, Kauristie K, Amm O, Mielich J, Kouba D. 2017. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. J Geophys Res Space Phys 122(1): 1199–1211. https://doi.org/10.1002/2016ja023050. [CrossRef] [Google Scholar]
- Breitling W, Kupferman R. 1967. Traveling ionospheric disturbances associated with nuclear detonations. J Geophys Res 72(1): 307–315. https://doi.org/10.1029/JZ072i001p00307. [CrossRef] [Google Scholar]
- Burt S. 2022. Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. Weather 77(3): 76–81. https://doi.org/10.1002/wea.4182. [CrossRef] [Google Scholar]
- Chou M-Y, Shen M-H, Lin CCH, Yue J, Chen C-H, Liu J-Y, Lin J-T. 2018. Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite. Space Weather 16(2): 172–184. https://doi.org/10.1002/2017SW001738. [CrossRef] [Google Scholar]
- Chum J, Hruska F, Zednik J, Lastovicka J. 2012. Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake. J Geophys Res Space Phys 117(A08): 319. https://doi.org/10.1029/2012ja017767. [Google Scholar]
- Cicone A. 2020. Iterative filtering as a direct method for the decomposition of nonstationary signals. Numer Algorithms 85(3): 811–827. https://doi.org/10.1007/s11075-019-00838-z. [CrossRef] [Google Scholar]
- Cicone A, Zhou H. 2021. Numerical analysis for iterative filtering with new efficient implementations based on FFT. Numer Math 147(1): 1–28. https://doi.org/10.1007/s00211-020-01165-5. [CrossRef] [Google Scholar]
- Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM. 2006. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2): 111–120. https://doi.org/10.1007/s00190-006-0093-1. [Google Scholar]
- Cronin S, Brenna M, Smith I, Barker S, Tost M, Ford M, Tonga’onevai S, Kula T, Vaiomounga R. 2017. New volcanic island unveils explosive past. Eos 98. https://doi.org/10.1029/2017eo076589. [Google Scholar]
- Dautermann T, Calais E, Lognonné P, Mattioli GS. 2009. Lithosphere–atmosphere–ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys J Int 179(3): 1537–1546. https://doi.org/10.1111/j.1365-246x.2009.04390.x. [CrossRef] [Google Scholar]
- Drobzheva YV, Krasnov V. 2006. Acoustic energy transfer to the upper atmosphere from surface chemical and underground nuclear explosions. J Atmos Sol-Terr Phys 68(3–5): 578–585. https://doi.org/10.1016/j.jastp.2005.03.023. [CrossRef] [Google Scholar]
- Fedorenko YP, Tyrnov OF, Fedorenko VN, Dorohov VL. 2013. Model of traveling ionospheric disturbances. J Space Weather Space Clim 3: A30. https://doi.org/10.1051/swsc/2013052. [CrossRef] [EDP Sciences] [Google Scholar]
- Fitzgerald TJ, Carlos RC. 1997. Effects of 450-kg surface explosions on HF radio reflection from the E layer. Radio Sci 32(1): 169–180. https://doi.org/10.1029/96RS02989. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Knudsen D, Haagmans R. 2008. Swarm – an earth observation mission investigating geospace. Adv Space Res 41(1): 210–216. https://doi.org/10.1016/j.asr.2006.10.008. [CrossRef] [Google Scholar]
- Galvan DA, Komjathy A, Hickey MP, Mannucci AJ. 2011. The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. J Geophys Res Space Phys 116: A06318. https://doi.org/10.1029/2010JA016204. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut. 24(3): 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Global Volcanism Program. 2013. Hunga Tonga-Hunga Ha’apai (243040). In: Volcanoes of the World, v. 4.10.5, Venzke E (Ed.). Smithsonian Institution. Downloaded 04 Oct 2022 (https://volcano.si.edu/volcano.cfm?vn=243040). https://doi.org/10.5479/si.GVP.VOTW4-2013.. [Google Scholar]
- Global Volcanism Program. 2022. Report on Hunga Tonga-Hunga Ha’apai (Tonga). In: Weekly volcanic activity report, 12 January–18 January 2022 , Sennert SK (Ed.), Smithsonian Institution and US Geological Survey. https://doi.org/GVP.WVAR20220112-243040. [Google Scholar]
- Haaser RA, Lay EH, Junor W. 2017. Analysis framework for systematically studying ionospheric response to impulsive events from below. Radio Sci 52(9): 1149–1169. https://doi.org/10.1002/2016rs006196. [CrossRef] [Google Scholar]
- Harding BJ, Wu Y-JJ, Alken P, Yamazaki Y, Triplett CC, Immel TJ, Gasque LC, Mende SB, Xiong C. 2022. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophys Res Lett 49(9): e2022GL098577. https://doi.org/10.1029/2022gl098577. [CrossRef] [Google Scholar]
- Harrison G. 2022. Pressure anomalies from the January 2022 Hunga Tonga-Hunga Ha’apai eruption. Weather 77(3): 87–90. https://doi.org/10.1002/wea.4170. [CrossRef] [Google Scholar]
- Heki K. 2006. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys Res Lett 33(L14): 303. https://doi.org/10.1029/2006GL026249. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res 111(A7). https://doi.org/10.1029/2005ja011474. [Google Scholar]
- Hines C. 1967. On the nature of traveling ionospheric disturbances launched by low-altitude nuclear explosions. J Geophys Res 18: 330–344. https://doi.org/10.1029/GM018p0330. [Google Scholar]
- Huang C, Helmboldt J, Park J, Pedersen T, Willemann R. 2019. Ionospheric detection of explosive events. Rev Geophys 57: 78–105. https://doi.org/10.1029/2017RG000594. [CrossRef] [Google Scholar]
- Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Math Phys Eng Sci 454(1971): 903–995. https://doi.org/10.1098/rspa.1998.0193. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20(2): 293. https://doi.org/10.1029/rg020i002p00293. [CrossRef] [Google Scholar]
- Igarashi K, Kainuma S, Nishimuta I, Okamoto S, Kuroiwa H, Tanaka T, Ogawa T. 1994. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J Atmos Terr Phys 56(9): 1227–1234. https://doi.org/10.1016/0021-9169(94)90060-4. [CrossRef] [Google Scholar]
- Jin Y, Kotova D, Xiong C, Brask SM, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2022. Ionospheric Plasma IRregularities – IPIR – data product based on data from the Swarm satellites. J Geophys Res Space Phys 127(4): e2021JA030183. https://doi.org/10.1029/2021ja030183. [Google Scholar]
- Jones TB, Spracklen CT. 1974. Ionospheric effects of the Flixborough explosion. Nature 250(5469): 719–720. https://doi.org/10.1038/250719a0. [CrossRef] [Google Scholar]
- Kanellakos DP. 1967. Response of the ionosphere to the passage of acoustic-gravity waves generated by low-altitude nuclear explosions. J Geophys Res 72(17): 4559–4576. https://doi.org/10.1029/JZ072i017p04559. [CrossRef] [Google Scholar]
- Kil H, Paxton LJ. 2017. Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by Swarm satellites. Geophys Res Lett 44(18): 9176–9182. https://doi.org/10.1002/2017gl074750. [CrossRef] [Google Scholar]
- Kirchengast G. 1997. Characteristics of high-latitude TIDs from different causative mechanisms deduced by theoretical modeling. J Geophys Res Space Phys 102(A3): 4597–4612. https://doi.org/10.1029/96ja03294. [CrossRef] [Google Scholar]
- Komjathy A, Sparks L, Wilson BD, Mannucci AJ. 2005. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(6): RS6006. https://doi.org/10.1029/2005RS003279. [Google Scholar]
- Kouba D, Boška J, Galkin IA, Santolk O, Šauli P. 2008. Ionospheric drift measurements: skymap points selection. Radio Sci 43(1): RS1S90. https://doi.org/10.1029/2007rs003633. [Google Scholar]
- Kouba D, Knížová PK. 2016. Ionospheric vertical drift response at a mid-latitude station. Adv Space Res 58(1): 108–116. https://doi.org/10.1016/j.asr.2016.04.018. [CrossRef] [Google Scholar]
- Kozlov AV, Paznukhov VV. 2008. Digisonde drift analysis software. AIP Conference Proceedings 974: 167–174. https://doi.org/10.1063/1.2885026. [CrossRef] [Google Scholar]
- Krasnov V, Drobzheva YV, Venart J, Lastovicka J. 2003. A re-analysis of the atmospheric and ionospheric effects of the Flixborough explosion. J Atmos Sol-Terr Phys 65(11–13): 1205–1212. https://doi.org/10.1016/j.jastp.2003.07.010. [CrossRef] [Google Scholar]
- Kubota T, Saito T, Nishida K. 2022. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science 377(6601): 91–94. https://doi.org/10.1126/science.abo4364. [CrossRef] [Google Scholar]
- Kulichkov SN, Chunchuzov IP, Popov OE, Gorchakov GI, Mishenin AA, et al. 2022. Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and tsunami. Pure Appl Geophys 179: 1533–1548. https://doi.org/10.1007/s00024-022-03046-4. [CrossRef] [Google Scholar]
- Kutiev I, Marinov P, Belehaki A. 2016. Real time 3-D electron density reconstruction over Europe by using TaD profiler. Radio Sci 51(7): 1176–1187. https://doi.org/10.1002/2015rs005932. [CrossRef] [Google Scholar]
- Laštovička J, Chum J. 2017. A review of results of the international ionospheric Doppler sounder network. Adv Space Res 60(8): 1629–1643. https://doi.org/10.1016/j.asr.2017.01.032. [CrossRef] [Google Scholar]
- Luo Y, Chernogor L, Garmash K, Guo Q, Rozumenko V, Shulga S, Zheng Y. 2020. Ionospheric effects of the Kamchatka meteoroid: results from multipath oblique sounding. J Atmos Sol-Terr Phys 207(105): 336. https://doi.org/10.1016/j.jastp.2020.105336. [Google Scholar]
- MacDougall J. 1966. The interpretation of ionospheric drift measurements. J Atmos Terr Phys 28(11): 1093–1109. https://doi.org/10.1016/s0021-9169(17)30047-8. [CrossRef] [Google Scholar]
- Maletckii B, Astafyeva E. 2021. Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time. Sci Rep 11(1): 20783. https://doi.org/10.1038/s41598-021-99906-5. [CrossRef] [Google Scholar]
- Materassi M, Piersanti M, Consolini G, Diego P, D’Angelo G, Bertello I, Cicone A. 2019. Stepping into the equatorward boundary of the auroral oval: preliminary results of multi scale statistical analysis. Ann Geophys 62(4): GM455. https://doi.org/10.4401/ag-7801. [Google Scholar]
- Matoza RS, Fee D, Assink JD, Iezzi AM, Green DN, et al. 2022. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 377(6601): 95–100. https://doi.org/10.1126/science.abo7063. [CrossRef] [Google Scholar]
- Nishioka M, Tsugawa T, Kubota M, Ishii M. 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys Res Lett 40(21): 5581–5586. https://doi.org/10.1002/2013gl057963. [CrossRef] [Google Scholar]
- Nur Cahyadi M, Handoko EY, Rahayu RW, Heki K. 2021. Comparison of volcanic explosions in Japan using impulsive ionospheric disturbances. Earth Planets Space 73: 228. https://doi.org/10.1186/s40623-021-01539-5. [CrossRef] [Google Scholar]
- Otsuka S. 2022. Visualizing lamb waves from a volcanic eruption using meteorological satellite Himawari-8. Geophys Res Lett 49(8): e2022GL098324. https://doi.org/10.1029/2022gl098324. [CrossRef] [Google Scholar]
- Park J, Helmboldt J, Greijner-Brzezinska DA, von Frese RR, Wilson TL. 2013. Ionospheric observations of underground nuclear explosions (UNE) using GPS and the Very Large Array. Radio Sci 48: 463–469. https://doi.org/10.1002/rds.20053. [CrossRef] [Google Scholar]
- Paul AK. 1984. The Computation of MUF(3000)F2. INAG Bulletin 45: 15. https://www.sws.bom.gov.au/IPSHosted/INAG/pdf/inag45.pdf. [Google Scholar]
- Paznukhov V, Altadill D, Juan JM, Blanch E. 2020. Ionospheric tilt measurements: application to traveling ionospheric disturbances climatology study. Radio Sci 55(2): RS1S90. https://doi.org/10.1029/2019rs007012. [CrossRef] [Google Scholar]
- Piersanti M, Materassi M, Cicone A, Spogli L, Zhou H, Ezquer RG. 2018. Adaptive local iterative filtering: a promising technique for the analysis of nonstationary signals. J Geophys Res Space Phys 123(1): 1031–1046. https://doi.org/10.1002/2017ja024153. [CrossRef] [Google Scholar]
- Piggott WR, Rawer K. 1978. U.R.S.I. handbook of ionogram interpretation and reduction, 2nd edn. World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado, USA. [Google Scholar]
- Pradipta R, Valladares CE, Doherty PH. 2015. Ionosonde observations of ionospheric disturbances due to the 15 February 2013 Chelyabinsk meteor explosion. J Geophys Res 120: 9988–9997. https://doi.org/10.1002/2015JA021767. [CrossRef] [Google Scholar]
- Ravanelli M, Occhipinti G, Savastano G, Komjathy A, Shume EB, Crespi M. 2021. GNSS total variometric approach: first demonstration of a tool for real-time tsunami genesis estimation. Sci Rep 11(1): 3114. https://doi.org/10.1038/s41598-021-82532-6. [CrossRef] [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53(3): 365–378. https://doi.org/10.1002/2017rs006263. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global Ionospheric Radio Observatory (GIRO). Earth Planets Space 63(4): 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Roberts DH, Klobuchar JA, Fougere PF, Hendrickson DH. 1982. A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. J Geophys Res 87(A8): 6291. https://doi.org/10.1029/JA087iA08p06291. [CrossRef] [Google Scholar]
- Saito A, Fukao S, Miyazaki S. 1998. High resolution mapping of TEC perturbations with the GSI GPS Network over Japan. Geophys Res Lett 25(16): 3079–3082. https://doi.org/10.1029/98gl52361. [CrossRef] [Google Scholar]
- Saito S. 2022. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 January 2022. Earth Planets Space 74: 57. https://doi.org/10.1186/s40623-022-01619-0. [CrossRef] [Google Scholar]
- Savastano G, Komjathy A, Verkhoglyadova O, Mazzoni A, Crespi M, Wei Y, Mannucci AJ. 2017. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: a preliminary feasibility demonstration. Sci Rep 7(1): 46607. https://doi.org/10.1038/srep46607. [CrossRef] [Google Scholar]
- Scott CJ, Major P. 2018. The ionospheric response over the UK to major bombing raids during World War II. AnnGeophys 36(5): 1243–1254. https://doi.org/10.5194/angeo-36-1243-2018. [Google Scholar]
- Shults K, Astafyeva E, Adourian S. 2016. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J Geophys Res Space Phys 121(10): 10303–10315. https://doi.org/10.1002/2016JA023382 [CrossRef] [Google Scholar]
- Šindelářová T, Burešová D, Chum J. 2009. Observations of acoustic-gravity waves in the ionosphere generated by severe tropospheric weather. Stud Geophys Geod 53(3): 403–418. https://doi.org/10.1007/s11200-009-0028-4. [CrossRef] [Google Scholar]
- Spogli L, Piersanti M, Cesaroni C, Materassi M, Cicone A, Alfonsi L, Romano V, Ezquer RG. 2019. Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. J Space Weather Space Clim 9: A35. https://doi.org/10.1051/swsc/2019032. [CrossRef] [EDP Sciences] [Google Scholar]
- Spogli L, Sabbagh D, Regi M, Cesaroni C, Perrone L, et al. 2021. Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations. J Geophys Res Space Phys 126(2). e2020JA028368. https://doi.org/10.1029/2020ja028368. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, Mccaffrey A, Prikryl P, Reid B, Wood A, Jayachandran PT. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga Volcanic Eruption. Geophys Res Lett 49(7). e2022GL098158. https://doi.org/10.1029/2022gl098158. [CrossRef] [Google Scholar]
- Urbar J, Cicone A, Spogli L, Cesaroni C, Alfonsi L. 2022. Intrinsic mode cross correlation: a novel technique to identify scale-dependent lags between two signals and its application to ionospheric science. IEEE Geosci Remote Sens Lett 19: 1–3. https://doi.org/10.1109/lgrs.2021.3122108. [CrossRef] [Google Scholar]
- Verhulst T, Altadill D, Mielich J, Reinisch B, Galkin I, et al. 2017. Vertical and oblique HF sounding with a network of synchronised ionosondes. Adv Space Res 60(8): 1644–1656. https://doi.org/10.1016/j.asr.2017.06.033. [CrossRef] [Google Scholar]
- Vincenty T. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 23(176): 88–93. [CrossRef] [Google Scholar]
- Wright CJ, Hindley NP, Alexander MJ, Barlow M, Hoffmann L, et al. 2022. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption. Nature 609: 741–746. https://doi.org/10.1038/s41586-022-05012-5. [CrossRef] [Google Scholar]
- Yeh KC, Liu CH. 1974. Acoustic-gravity waves in the upper atmosphere. Rev Geophys Space Phys 12(2): 193. https://doi.org/10.1029/rg012i002p00193. [CrossRef] [Google Scholar]
- Zel’dovich YB, Raizer YP. 2002. Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York & London. [Google Scholar]
- Zhang S-R, Vierinen J, Aa E, Goncharenko LP, Erickson PJ, Rideout W, Coster AJ, Spicher A. 2022. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via lamb waves. Front Astron Space Sci 9. https://doi.org/10.3389/fspas.2022.871275. [Google Scholar]
- Zhang X, Tang L. 2015. Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion. Ann Geophys 33: 137–142. https://doi.org/10.5194/angeo-33-137-2015. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.