Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2024002 | |
Published online | 12 April 2024 |
- Aarons J. 1982. Global Morphology of Ionospheric Scintillations. Proc IEEE 70(4): 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Akasofu S-I. 1996. Search for the “unknown” quantity in the solar wind: A personal account. J. Geophys. Res. 101: 10531–10540. https://doi.org/10.1029/96JA00182. [CrossRef] [Google Scholar]
- Appleton E. 1946. Two anomalies in the ionosphere. Nature 157(3995): 691. https://doi.org/10.1038/157691a0. [CrossRef] [Google Scholar]
- Balan N, Liu L, Le H. 2018. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet Phys 2: 257–275. https://doi.org/10.26464/epp2018025. [CrossRef] [Google Scholar]
- Barlow RJ. 1989. Statistics: A guide to the use of statistical methods in the physical sciences. Wiley, Chichester, UK. ISBN: 978-0-471-92295-7. [Google Scholar]
- Basu S, Basu S. 1981. Equatorial scintillations – A review. J Atmos Sol-Terr Phys 43(5–6): 473–489. https://doi.org/10.1016/0021-9169(81)90110-0. [CrossRef] [Google Scholar]
- Bezděk A, Sebera J, Klokočník J. 2018. Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction. Adv Space Res 62(2): 317–325. https://doi.org/10.1016/j.asr.2018.04.041. [CrossRef] [Google Scholar]
- Birkeland K. 1913. The Norwegian aurora polaris expedition 1902-03, Vols. I and II, Aschehoug, Christiania, Norway. [Google Scholar]
- Boyde B, Wood A, Dorrian G, Fallows R, Themens D, Mielich J, et al. 2022. Lensing from small-scale travelling ionospheric disturbances observed using LOFAR. J Space Weather Space Clim 12: 34. https://doi.org/10.1051/swsc/2022030. [CrossRef] [EDP Sciences] [Google Scholar]
- Brekke A. 1997. Physics of the upper polar atmosphere, Wiley-Praxis series in atmospheric physics. Wiley, Chichester, UK. ISBN: 0471960187. [Google Scholar]
- Buchau J, Reinisch BW, Weber EJ, Moore JG. 1983. Structure and dynamics of the winter polar cap F region. Radio Sci 18: 995–1010. https://doi.org/10.1029/RS018i006p00995. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I, Sokolovsky S. 2019. Multi-instrumental observation of storm-induced ionospheric plasma bubbles at equatorial and middle latitudes. J Geophys Res Space Phys 124: 1491–1508. https://doi.org/10.1029/2018JA026309. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2016. First observations of super plasma bubbles in Europe. Geophys Res Lett 43: 11137–11145. https://doi.org/10.1002/2016GL071421. [CrossRef] [Google Scholar]
- Crowley G. 1996. Critical Review of patches and blobs. In: Polar Cap Boundary Phenomena, in: URSI Review of Radio Science 1993–1996, Stone WR (Ed.), published for the International Union of Radio Science, Oxford University Press, pp. 619–648. [Google Scholar]
- De Franceschi G, Alfonsi L, Romano V, Aquino M, Dodson A, Mitchell CN, Spencer P, Wernik AW. 2008. Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms. J Atmos Sol Terr Phys 70(6): 879–888. https://doi.org/10.1016/j.jastp.2007.05.018. [CrossRef] [Google Scholar]
- De Franceschi G, Spogli L, Alfonsi L, Romano V, Cesaroni C, Hunstad I. 2019. The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci Rep 9(1): 1–14. https://doi.org/10.1038/s41598-019-44829-5. [PubMed] [Google Scholar]
- Dorrian GD, Wood AG, Ronksley A, Aruliah A, Shahtahmassebi G. 2019. Statistical modelling of the coupled F-region ionosphere-thermosphere at high latitude during polar darkness. J Geophys Res 124: 1389–1409. https://doi.org/10.1029/2018JA026171. [CrossRef] [Google Scholar]
- Elmas Z, Forte B, Aquino A. 2011. The impact of ionospheric scintillation on the GNSS receiver signal tracking performance and measurement accuracy. In: URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011. https://doi.org/10.1109/URSIGASS.2011.6123719. [Google Scholar]
- Fallows RA, Forte B, Astin I, Allbrook T, Arnold A, Wood A, et al. 2020. A LOFAR observation of ionospheric scintillation from simultaneous medium- and large-scale travelling ionospheric disturbances. J Space Weather Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Foster JC. 1984. Ionospheric signatures of magnetospheric convection. J Geophys Res 89: 855–865. https://doi.org/10.1029/JA089iA02p00855. [CrossRef] [Google Scholar]
- Francis SH. 1975. Global propagation of atmospheric gravity waves: a review. J Atmos Terr Phys 37: 1011–1030. https://doi.org/10.1016/0021-9169(75)90012-4. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Hulot G. 2006. Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58(4): 351–358. https://doi.org/10.1186/BF03351933. [CrossRef] [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M.. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24(3): 1–13. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Hargreaves JK. 1992. The solar-terrestrial environment, Cambridge atmospheric and space science series. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511628924. [Google Scholar]
- Hey JS, Parsons SJ, Phillips JW. 1946. Fluctuations in cosmic radiation at radiofrequencies. Nature 158: 247. https://doi.org/10.1038/158234a0. [CrossRef] [Google Scholar]
- Hill GE. 1963. Sudden enhancements of F-layer ionization in polar regions. J Atmos Sci 20: 492–497. https://doi.org/10.1175/1520-0469(1963)020<0492:SEOLII>2.0.CO;2. [CrossRef] [Google Scholar]
- Hinteregger HE. 1977. EUV flux variation during end of solar cycle 20 and beginning cycle 21, observed from AE-C satellite. Geophys Res Letts 4(6): 231–234. https://doi.org/10.1029/GL004i006p00231. [CrossRef] [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Kil H, Heelis RA. 1998. Global distribution of density irregularities in the equatorial ionosphere. J Geophys Res Space Phys 103(A1): 407–417. https://doi.org/10.1029/97JA02698. [CrossRef] [Google Scholar]
- Kinrade J, Mitchell CN, Smith ND, Ebihara Y, Weatherwax AT, Bust GS. 2013. GPS phase scintillation associated with optical auroral emissions: first statistical results from the geographic South Pole. J Geophys Res 118: 2490–2502. https://doi.org/10.1002/jgra.50214. [CrossRef] [Google Scholar]
- Koskinen HE, Tanskanen EI. 2002. Magnetospheric energy budget and the epsilon parameter. J Geophys Res Space Phys 107(A11): SMP 42-1–SMP 42-10. https://doi.org/10.1029/2002JA009283. [CrossRef] [Google Scholar]
- Kotova D, Jin Y, Spogli L, Wood AG, Urbar J, Rawlings JT, Whittaker IC, Alfonsi L, Clausen LBN, Høeg P, Miloch WJ. 2023. Electron density fluctuations from Swarm as a proxy for ground-based scintillation data: a statistical perspective. Adv Space Res 72: 5399–5415. https://doi.org/10.1016/j.asr.2022.11.042. [CrossRef] [Google Scholar]
- Kotova D, Jin Y, Miloch W. 2022. Interhemispheric variability of the electron density and derived parameters by the Swarm satellites during different solar activity. J Space Weather Space Clim 12: 12. https://doi.org/10.1051/swsc/2022007. [CrossRef] [EDP Sciences] [Google Scholar]
- Jenner L, Wood AG, Dorrian GD, Oksavik K, Yeoman TK, Fogg A. 2020. Plasma density gradients at the edge of polar ionospheric holes: the absence of phase scintillation. Ann. Geophys. 38: 575–590. https://doi.org/10.5194/angeo-38-575-2020. [CrossRef] [Google Scholar]
- Jin Y, Kotova D, Xiong C, Brask SM, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2022. Ionospheric plasma irregularities – IPIR – Data product based on data from the swarm satellites. J Geophys Res Space Phys 127(4): e2021JA030183. https://doi.org/10.1029/2021JA030183. [Google Scholar]
- Jin Y, Xiong C, Clausen L, Spicher A, Kotova D, Brask S, Kervalishili G, Stolle C, Miloch WJ. 2020. Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites. J Geophys Res Space Phys 125(7): e2020JA028103. https://doi.org/10.1029/2020JA028103. [CrossRef] [Google Scholar]
- Jin Y, Spicher A, Xiong C, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2019. Ionospheric plasma rregularities characterized by the Swarm satellites: statistics at high latitudes. J Geophys Res Space Phys 124: 1262–1282. https://doi.org/10.1029/2018JA026063. [CrossRef] [Google Scholar]
- Jin Y, Moen J, Miloch WJ. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J Space Weather Space Clim 4: A23. https://doi.org/10.1051/SWSC/2014019. [CrossRef] [EDP Sciences] [Google Scholar]
- Jin Y, Moen JI, Miloch WJ, Clausen LBN, Oksavik K. 2016. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. J Geophys Res Space Phys 121: 4679–4697. https://doi.org/10.1002/2016JA022613. [CrossRef] [Google Scholar]
- Jin Y, Oksavik K. 2018. GPS scintillations and losses of signal lock at high latitudes during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 123: 7943–7957. https://doi.org/10.1029/2018JA025933. [CrossRef] [Google Scholar]
- Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI, et al. 2020. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys Res Lett 47: e2020GL088306. https://doi.org/10.1029/2020GL088306. [CrossRef] [Google Scholar]
- Li G, Ning B, Otsuka Y, Abdu MA, Abadi P, Liu Z, et al. 2021. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surv Geophys 42(1): 201–238. https://doi.org/10.1007/s10712-020-09613-5. [CrossRef] [Google Scholar]
- Liemohn MW, Shane AD, Azari AR, Petersen AK, Swiger BM, Mukhopadhyay A. 2021. RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. J Atmos Sol Terr Phys 218: 105624. https://doi.org/10.1016/j.jastp.2021.105624. [CrossRef] [Google Scholar]
- Lockwood M, Carlson HC Jr. 1992. Production of polar cap electron density patches by transient magnetopause reconnection. Geophys Res Lett 19: 1731–1734. https://doi.org/10.1029/92GL01993. [CrossRef] [Google Scholar]
- McCaffrey AM, Jayachandran PT. 2019. Determination of the refractive contribution to GPS phase “scintillation”. J Geophys Res Space Phys 124(2): 1454–1469. https://doi.org/10.1029/2018JA025759. [CrossRef] [Google Scholar]
- McClure JP, Hanson WB, Hoffman JH. 1977. Plasma bubbles and irregularities in the equatorial ionosphere. J Geophys Res 82(19): 2650–2656. https://doi.org/10.1029/JA082i019p02650. [CrossRef] [Google Scholar]
- McCullagh P, Nelder JA. 1983. Generalized linear models. CRC monographs on statistics and applied probability, Chapman and Hall, London. ISBN 10:0412238500. [Google Scholar]
- Mitchell CN, Alfonsi L, De Franceschi G, Lester M, Romano V, Wernik AW. 2005. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett 32: L12S03. https://doi.org/10.1029/2004GL021644. [Google Scholar]
- Mott-Smith H, Langmuir I. 1926. The theory of collectors in gaseous discharges. Phys Rev 28: 27. https://doi.org/10.1103/PhysRev.28.727. [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res 112: A01206. https://doi.org/10.1029/2006JA012015. [Google Scholar]
- Pedersen PO. 1927. Propagation of radio waves. Danmarks Natur. Samf, Copenhagen. [Google Scholar]
- Pedersen TR, Fejer BG, Doe RA, Weber EJ. 2000. An incoherent scatter radar technique for determining two-dimensional horizontal ionization structure in polar cap F region patches. J Geophys Res 105: 10637–10655. https://doi.org/10.1029/1999JA000073. [CrossRef] [Google Scholar]
- Prikryl P, Jayachandran PT, Chadwick R, Kelly TD. 2015. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann Geophys 33: 531–545. https://doi.org/10.5194/angeo-33-531-2015. [CrossRef] [Google Scholar]
- Pryse SE, Wood AG, Middleton HR, McCrea IW, Lester M. 2006. Reconfiguration of polar cap plasma in the magnetic midnight sector. Ann Geophys 24: 2201–2208. https://doi.org/10.5194/angeo-24-2201-2006. [CrossRef] [Google Scholar]
- Rajesh PK, Lin CCH, Lin JT, Lin CY, Liu JY, Matsuo T, et al. 2022. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys Res Lett 49: e2022GL099798. https://doi.org/10.1029/2022GL099798. [CrossRef] [Google Scholar]
- Rees MH. 1989. Physics and chemistry of the upper atmosphere, Cambridge atmospheric and space science series. Cambridge University Press, Cambridge. ISBN: 9780521368483. [CrossRef] [Google Scholar]
- Rishbeth H, Setty CSGK. 1961. The F-layer at sunrise. J Atmos Terr Phys 21: 263–276. https://doi.org/10.1016/0021-9169(61)90205-7. [CrossRef] [Google Scholar]
- Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol Terr Phys 63: 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0. [CrossRef] [Google Scholar]
- Rishbeth H. 1971. Polarization fields produced by winds in the equatorial F-region. Planet Space Sci 19(3): 357–369. https://doi.org/10.1016/0032-0633(71)90098-5. [CrossRef] [Google Scholar]
- Rodger AS, Pinnock M, Dudeney JR, Baker KB, Greenwald RA. 1994. A new mechanism for polar patch formation. J Geophys Res 99(A4): 6425–6436. https://doi.org/10.1029/93JA01501. [CrossRef] [Google Scholar]
- Schwemer G. 2000. General linear models for multicenter clinical trials. Control Clin Trials 21(1): 21–29. https://doi.org/10.1016/s0197-2456(99)00035-5. [CrossRef] [Google Scholar]
- Smith AM, Mitchell CN, Watson RJ, Meggs RW, Kintner PM, Kauristie K, Honary F. 2008. GPS scintillation in the high arctic associated with an auroral arc. Space Weather 6: S03D01. https://doi.org/10.1029/2007SW000349. [Google Scholar]
- Sojka JJ, Bowline MD, Schunk RW, Decker DT, Balladares CE, Sheehan R, Anderson DN, Heelis RA. 1993. Modelling polar-cap F-region patches using time-varying convection. Geophys Res Lett 20: 1783–1786. https://doi.org/10.1029/93GL01347. [CrossRef] [Google Scholar]
- Spogli L, Jin Y, Urbář J, Wood AG, Donegan-Lawley EE, Clausen LBN, et al. 2024. Statistical models of the variability of plasma in the topside ionosphere: 2: Performance assessment. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2024003. [Google Scholar]
- Spogli L, Ghobadi H, Cicone A, Alfonsi L, Cesaroni C, Linty N, Romano V, Cafaro M. 2021. Adaptive phase detrending for GNSS scintillation detection: A case study over Antarctica. IEEE Geosci Remote Sens Lett 19: 1–5. https://doi.org/10.1109/LGRS.2021.3067727. [Google Scholar]
- Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino MHO, Dodson A. 2009. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27: 3429–3437. https://doi.org/10.5194/angeo-27-3429-2009. [CrossRef] [Google Scholar]
- Sun W, Kuriakose AK, Li G, Li Y, Zhao X, Hu L, et al. 2022. Unseasonal super ionospheric plasma bubble and scintillations seeded by the 2022 Tonga Volcano Eruption related perturbations. J Space Weather Space Clim 12: 25. https://doi.org/10.1051/swsc/2022024. [CrossRef] [EDP Sciences] [Google Scholar]
- Tapping KF. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather 11: 394–406. https://doi.org/10.1002/swe.20064. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, et al. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys Res Lett 49: e2022GL098158. https://doi.org/10.1029/2022GL098158. [CrossRef] [Google Scholar]
- Urbar J, Spogli L, Cicone A, Clausen LBN, Jin Y, Wood AG, et al. 2022. Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Adv Space Res 72: 5490–5502. https://doi.org/1010.1016/j.asr.2022.06.045. [Google Scholar]
- Valladares CE, Decker DT, Sheehan R, Anderson DN, Bullett T, Reinisch BW. 1998. Formation of polar cap patches associated with north-to-south transitions of the interplanetary magnetic field. J Geophys Res 103(A7): 14657–14670. https://doi.org/10.1029/97JA03682. [CrossRef] [Google Scholar]
- Valladares CE, Basu S, Buchau J, Friis-Christensen E. 1994. Experimental evidence for the formation and entry of patches into the polar cap. Radio Sci 29(1): 167–194. https://doi.org/10.1029/93RS01579. [CrossRef] [Google Scholar]
- van den IJssel J, Doornbos E, Iorfida E, March G, Siemes C, Montenbruck O. 2020. Thermosphere densities derived from Swarm GPS observations. Adv Space Res 65(7): 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004. [CrossRef] [Google Scholar]
- Walker IK, Moen J, Kersley L, Lorentzen DA. 1999. On the possible role of cusp/cleft precipitation in the formation of polar-cap patches. Ann Geophys 17: 1298–1305. https://doi.org/10.1007/s00585-999-1298-4. [CrossRef] [Google Scholar]
- Weber EJ, Klobuchar JA, Buchau J, Carlson HC Jr, Livingston RC, de la Beaujadiere O, McCready M, Moore JG, Bishop GJ. 1986. Polar cap F layer patches: Structure and dynamics. J Geophys Res 91: 12121–12129. https://doi.org/10.1029/JA091iA11p12121. [CrossRef] [Google Scholar]
- Weber EJ, Buchau J, Moore JG, Sharber JR, Livingston RC, Winningham JD, Reinisch BW. 1984. F layer ionisation patches in the polar cap. J Geophys Res 89: 1683–1694. https://doi.org/10.1007/s00585-999-1298-4. [CrossRef] [Google Scholar]
- Wernik AW, Secan JA, Fremouw EJ. 2003. Ionospheric irregularities and scintillation. Adv Space Res 31: 971–981. https://doi.org/10.1016/S0273-1177(02)00795-0. [CrossRef] [Google Scholar]
- Wood AG, Alfonsi L, Clausen LBN, Jin Y, Spogli L, Urbar J, et al. 2022. Variability of ionospheric plasma: results from the ESA Swarm Mission. Space Sci Rev 218: 52. https://doi.org/10.1007/s11214-022-00916-0. [CrossRef] [Google Scholar]
- Wood AG, Mountain L, Connors R, Maher M, Ropkins K. 2013. Updating outdated predictive accident models. Accid Anal Prev 55: 48–53. https://doi.org/10.1016/j.aap.2013.02.028. [CrossRef] [Google Scholar]
- Wood AG, Pryse SE. 2010. Seasonal influence on polar cap patches in the high-latitude nightside ionosphere. J Geophys Res 115: A07311. https://doi.org/10.1029/2009JA014985. [Google Scholar]
- Woodman RF, La Hoz C. 1976. Radar observations of F region equatorial irregularities. J Geophys Res Space Phys 81(31): 5447–5466. https://doi.org/10.1029/JA081i031p05447. [CrossRef] [Google Scholar]
- Wright JW. 1963. The F region seasonal anomaly. J Geophys Res 68: 4379–4381. https://doi.org/10.1029/JZ068i014p04379. [CrossRef] [Google Scholar]
- Wright CJ, Hindley NP, Alexander MJ, Barlow M, Hoffmann L, Mitchell CN, et al. 2022. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption. Nature 609: 741–746. https://doi.org/10.1038/s41586-022-05012-5. [CrossRef] [Google Scholar]
- Zhang Q-H, Ma Y-Z, Jayachandran PT, Moen J, Lockwood M, Zhang Y-L, et al. 2017. Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophys Res Lett 44: 8159–8167. https://doi.org/10.1002/2017GL073439. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.