Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2024007 | |
Published online | 12 April 2024 |
- Alberti T, Laurenza M, Cliver EW. 2019. Forecasting solar proton events by using the ESPERTA model. Nuovo Cimento C Geophys Space Phys C 42(1): 40. https://doi.org/10.1393/ncc/i2019-19040-y. [Google Scholar]
- Alberti T, Laurenza M, Cliver EW, Storini M, Consolini G, Lepreti F. 2017. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys J 838(1): 59. https://doi.org/10.3847/1538-4357/aa5cb8. [CrossRef] [Google Scholar]
- Aran A, Sanahuja B, Lario D. 2006. SOLPENCO: A solar particle engineering code. Adv Space Res 37(6): 1240–1246. https://doi.org/10.1016/j.asr.2005.09.019. [CrossRef] [Google Scholar]
- Balch CC. 1999. SEC proton prediction model: verification and analysis. Radiat Meas 30(3): 231–250. https://doi.org/10.1016/S1350-4487(99)00052-9. [CrossRef] [Google Scholar]
- Balch CC. 2008. Updated verification of the space weather prediction center’s solar energetic particle prediction model. Space Weather 6(1): S01001. https://doi.org/10.1029/2007SW000337. [Google Scholar]
- Benella S, Stumpo M, Laurenza M, Alberti T, Consolini G, Marcucci MF. 2023. Statistical treatment of solar energetic particle forecasting through supervised learning approaches. In: Proceedings of Science, 27th European Cosmic Ray Symposium. p. 14. https://doi.org/10.22323/1.423.0014. [CrossRef] [Google Scholar]
- Bothmer V, Daglis IA, Bogdan TJ. 2007. Space weather: Physics and effects. Phys Today 60(12): 59. https://doi.org/10.1063/1.2825074. [Google Scholar]
- Boubrahimi SF, Aydin B, Martens P, Angryk R. 2017. On the prediction of >100 MeV solar energetic particle events using GOES satellite data. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE. pp. 2533–2542. https://doi.org/10.1109/BigData.2017.8258212. [CrossRef] [Google Scholar]
- Bougeret JL, Kaiser ML, Kellogg PJ, Manning R, Goetz K, et al. 1995. Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci Rev 71(1–4): 231–263. https://doi.org/10.1007/BF00751331. [CrossRef] [Google Scholar]
- Hargreaves JK. 2005. A new method of studying the relation between ionization rates and radio-wave absorption in polar-cap absorption events. Ann Geophys 23(2): 359–369. https://doi.org/10.5194/angeo-23-359-2005. [CrossRef] [Google Scholar]
- Heidke P. 1926. Berechnung des erfolges und der güte der windstärkevorhersagen im sturmwarnungsdienst. Geogra Ann 8(4): 301–349. https://doi.org/10.2307/519729. [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Hunsucker RD. 1992. Auroral and polar-cap ionospheric effects on radio propagation. IEEE Trans Antennas Propag 40(7): 818–828. https://doi.org/10.1109/8.155747. [CrossRef] [Google Scholar]
- Kahler S, Cliver E, Ling A. 2007. Validating the proton prediction system (PPS). J Atmos Sol Terr Phys 69(1–2): 43–49. https://doi.org/10.1016/j.jastp.2006.06.009. [CrossRef] [Google Scholar]
- Laurenza M, Alberti T, Cliver E. 2018. A short-term ESPERTA-based forecast tool for moderate-to-extreme solar proton events. Astrophys J 857(2): 107. https://doi.org/10.3847/1538-4357/aab712. [CrossRef] [Google Scholar]
- Laurenza M, Cliver E, Hewitt J, Storini M, Ling A, Balch C, Kaiser M. 2009. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7(4), https://doi.org/10.1029/2007SW000379. [CrossRef] [Google Scholar]
- Laurenza M, Del Moro D, Alberti T, Battiston R, Benella S, et al. 2023. The CAESAR project for the ASI space weather infrastructure. Remote Sens 15(2): 346. https://doi.org/10.3390/rs15020346. [CrossRef] [Google Scholar]
- Lavasa E, Giannopoulos G, Papaioannou A, Anastasiadis A, Daglis IA, Aran A, Pacheco D, Sanahuja B. 2021. Assessing the predictability of solar energetic particles with the use of machine learning techniques. Sol Phys 296(7): 107. https://doi.org/10.1007/s11207-021-01837-x. [CrossRef] [Google Scholar]
- Lecacheux A. 2000. The Nançay decameter array: A useful step towards giant, new generation radio telescopes for long wavelength radio astronomy. Geophys Monogr Ser 119: 321. https://doi.org/10.1029/GM119p0321. [Google Scholar]
- Luhmann JG, Ledvina SA, Krauss-Varban D, Odstrcil D, Riley P. 2007. A heliospheric simulation-based approach to SEP source and transport modeling. Adv Space Res 40(3): 295–303. https://doi.org/10.1016/j.asr.2007.03.089. [CrossRef] [Google Scholar]
- Malandraki OE, Crosby NB. 2018. The HESPERIA HORIZON 2020 project and book on solar particle radiation storms forecasting and analysis. Space Weather 16(6): 591–592. https://doi.org/10.1029/2018SW001950. [CrossRef] [Google Scholar]
- Núñez M. 2011. Predicting solar energetic proton events (E>10 MeV). Space Weather 9(7): S07003. https://doi.org/10.1029/2010SW000640. [Google Scholar]
- Núñez M, Paul-Pena D. 2020. Predicting >10 MeV SEP events from solar flare and radio burst data. Universe 6(10): 161. https://doi.org/10.3390/universe6100161. [CrossRef] [Google Scholar]
- Núñez M, Klein K-L, Heber B, Malandraki OE, Zucca P, Labrens J, Reyes-Santiago P, Kuehl P, Pavlos E. 2018. HESPERIA forecasting tools: Real-time and post-event. In: Solar particle radiation storms forecasting and analysis. Springer, Cham. pp. 113–131. https://doi.org/10.1007/978-3-319-60051-2_7. [Google Scholar]
- Papaioannou A, Anastasiadis A, Sandberg I, Jiggens P. 2018. Nowcasting of solar energetic particle events using near real-time coronal mass ejection characteristics in the framework of the FORSPEF tool. J Space Weather Space Clim 8: A37. https://doi.org/10.1051/swsc/2018024. [CrossRef] [EDP Sciences] [Google Scholar]
- Papaioannou A, Vainio R, Raukunen O, Jiggens P, Aran A, Dierckxsens M, Mallios SA, Paassilta M, Anastasiadis A. 2022. The probabilistic solar particle event forecasting (PROSPER) model. J Space Weather Space Clim 12: 24. https://doi.org/10.1051/swsc/2022019. [CrossRef] [EDP Sciences] [Google Scholar]
- Posner A. 2007. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5(5). https://doi.org/10.1029/2006SW000268. [CrossRef] [Google Scholar]
- Richardson IG, Mays ML, Thompson BJ. 2018. Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena. Space Weather 16(11). 1862–1881. https://doi.org/10.1029/2018SW002032. [CrossRef] [Google Scholar]
- Smart DF, Shea MA. 1979. PPS76: A computerized event mode solar proton forecasting technique. In: Vol. 1 of NOAA Solar-Terrestrial Predictions Proceedings. Donnelly RF (Ed.) National Oceanic and Atmospheric Administration Environmental Research Laboratories, Boulder CO. pp. 406–427. [Google Scholar]
- Smart D, Shea M. 1989. PPS-87: A new event oriented solar proton prediction model. Adv Space Res 9(10): 281–284. https://doi.org/10.1016/0273-1177(89)90450-X. [CrossRef] [Google Scholar]
- St Cyr OC, Posner A, Burkepile JT. 2017. Solar energetic particle warnings from a coronagraph. Space Weather 15(1): 240–257. https://doi.org/10.1002/2016SW001545. [CrossRef] [Google Scholar]
- Stumpo M, Benella S, Laurenza M, Alberti T, Consolini G, Marcucci MF. 2021. Open issues in statistical forecasting of solar proton events: a machine learning perspective. Space Weather 19(10): e2021SW002794. https://doi.org/10.1029/2021SW002794. [CrossRef] [Google Scholar]
- Temmer M. 2021. Space weather: the solar perspective. Living Rev Sol Phys 18(1): 4. https://doi.org/10.1007/s41116-021-00030-3. [CrossRef] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s Particle Radiation Environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, et al. 2013. LOFAR: The LOw-Frequency ARray. A&A 556: A2. https://doi.org/10.1051/0004-6361/201220873. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Whitman K, Egeland R, Richardson IG, Allison C, Quinn P, et al. 2023. Review of solar energetic particle models. Adv Space Res 72(12): 5161–5242. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.