Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2025012 | |
Published online | 04 June 2025 |
- Bates DR, Seaton MJ. 1949. The quantal theory of continuous absorption of radiation by various atoms in their ground states. II. Further calculations on oxygen, nitrogen and carbon. Mon Not R Astron Soc 109: 698. https://doi.org/10.1093/mnras/109.6.698. [CrossRef] [Google Scholar]
- Bilitza D, Reinisch BW. 2021. Preface: international reference ionosphere – progress and new inputs. Adv Space Res 68(5): 2057–2058. https://doi.org/10.1016/j.asr.2021.04.015. [CrossRef] [Google Scholar]
- Bouziane A, Amin Ferdi M, Djebli M. 2022. Studying nighttime nitric oxide emission at 5.3 μm during the geomagnetic storm in the Earth’s ionosphere. Astrophys Space Sci 367: 3. https://doi.org/10.1007/s10509-021-04037-y. [CrossRef] [Google Scholar]
-
Broadfoot AL. 1967. Resonance scattering by
. Planet Space Sci 15(12): 1801–1815. https://doi.org/10.1016/0032-0633(67)90017-7. [CrossRef] [Google Scholar]
-
Broadfoot AL, Hunten DM. 1966.
emission in the twilight. Planet Space Sci 14(12): 1303–1319. https://doi.org/10.1016/0032-0633(66)90083-3. [CrossRef] [Google Scholar]
- Degen V. 1982. Synthetic spectra for auroral studies: The N2 Vegard-Kaplan band system. J Geophys Res 87(A12): 10541–10547. https://doi.org/10.1029/JA087iA12p10541. [CrossRef] [Google Scholar]
- Egeland A, Burke WJ. 2019. Auroral hydrogen emissions: a historic survey. Hist Geo- Space Sci 10(1): 201–213. https://doi.org/10.5194/hgss-10-201-2019. [CrossRef] [Google Scholar]
-
Ellingsen PG, Lorentzen D, Kenward D, Hecht JH, Evans JS, Sigernes F, Lessard M. 2021. Observations of sunlit
aurora at high altitudes during the RENU2 flight. Ann Geophys 39(5): 849–859. https://doi.org/10.5194/angeo-39-849-2021. [CrossRef] [Google Scholar]
- Feldman PD, Doering JP. 1975. Auroral electrons and the optical emissions of nitrogen. J Geophys Res 80(19): 2808–2812. https://doi.org/10.1029/JA080i019p02808. [CrossRef] [Google Scholar]
- Frey HU, Haerendel G, Mende SB, Forrester WT, Immel TJ, ØStgaard N. 2004. Subauroral morning proton spots (SAMPS) as a result of plasmapause-ring-current interaction. J Geophys Res Space Phy 109(A10): A10305. https://doi.org/10.1029/2004JA010516. [Google Scholar]
- Galand M, Lilensten J, Kofman W, Lummerzheim D. 1998. Proton transport model in the ionosphere. 2. Influence of magnetic mirroring and collisions on the angular redistribution in a proton beam. Ann Geophys 16(10): 1308–1321. https://doi.org/10.1007/s00585-998-1308-y. [CrossRef] [Google Scholar]
- Galand M, Lilensten J, Kofman W, Sidje RB. 1997. Proton transport model in the ionosphere 1. Multistream approach of the transport equations. J Geophys Res 102(10): 22261–22272. https://doi.org/10.1029/97JA01903. [CrossRef] [Google Scholar]
- Gallardo-Lacourt B, Frey HU, Martinis C. 2021. Proton aurora and optical emissions in the subauroral region. Space Sci Rev 217(1): 10. https://doi.org/10.1007/s11214-020-00776-6. [CrossRef] [Google Scholar]
- Gattinger RL, Jones AV. 1974. Quantitative spectroscopy of the aurora II – the spectrum of medium intensity aurora between 4500 and 8900 A. Can J Phys 52: 2343–2356. https://doi.org/10.1139/p74-305. [CrossRef] [Google Scholar]
- Gattinger RL, Vallance Jones A, Degenstein DA, Llewellyn EJ. 2010. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft. Can J Phys 88(8): 559–567. https://doi.org/10.1139/P10-037. [CrossRef] [Google Scholar]
- Grandin M, Bruus E, Ledvina VE, Partamies N, Barthelemy M, et al. 2024. The Gannon Storm: citizen science observations during the geomagnetic superstorm of 10 May 2024. Geosci Commun 7(4): 297–316. https://doi.org/10.5194/gc-7-297-2024. [CrossRef] [Google Scholar]
- Gronoff G, Lilensten J, Desorgher L, Flückiger E. 2009. Ionization processes in the atmosphere of Titan. I. Ionization in the whole atmosphere. A&A 506(2): 955–964. https://doi.org/10.1051/0004-6361/200912371. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff G, Lilensten J, Simon C, Barthélemy M, Leblanc F, Dutuit O. 2008. Modelling the Venusian airglow. A&A 482(3): 1015–1029. https://doi.org/10.1051/0004-6361:20077503. [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff G, Simon Wedlund C, Mertens CJ, Barthélemy M, Lillis RJ, Witasse O. 2012a. Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. J Geophys Res Space Phys 117(A5): A05309. https://doi.org/10.1029/2011JA017308. [Google Scholar]
- Gronoff G, Simon Wedlund C, Mertens CJ, Lillis RJ. 2012b. Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars. J Geophys Res Space Phys 117(A4): A04306. https://doi.org/10.1029/2011JA016930. [Google Scholar]
- Gronoff G, Wedlund CS, Hegyi B, Lilensten J, Glocer A, Cessateur G, Witasse O, Mertens CJ. 2025. ATMOCIAD: the atomic and molecular cross-section for ionization and aurora database. Adv Space Res. https://doi.org/10.1016/j.asr.2025.03.061. [Google Scholar]
- Grubbs G, Michell R, Samara M, Hampton D, Hecht J, Solomon S, Jahn J-M. 2018. A Comparative study of spectral auroral intensity predictions from multiple electron transport models. J Geophys Res Space Phys 123(1): 993–1005. https://doi.org/10.1002/2017JA025026. [CrossRef] [Google Scholar]
- Hobbs PV. 2012. Basic physical chemistry for the atmospheric sciences. Cambridge University Press. ISBN 9780511802423. [Google Scholar]
- Hughes ACG, Chaffin M, Mierkiewicz E, Deighan J, Jolitz RD, et al. 2023. Advancing our understanding of martian proton aurora through a coordinated multi-model comparison campaign. J Geophys Res Space Phys 128(10): e2023JA031838. https://doi.org/10.1029/2023JA031838. [CrossRef] [Google Scholar]
-
Hunten DM. 2003. Sunlit aurora and the
ion: a personal perspective. Planet Space Sci 51(13): 887–890. https://doi.org/10.1016/S0032-0633(03)00079-5. [CrossRef] [Google Scholar]
-
Jokiaho O, Lanchester BS, Ivchenko N. 2009. Resonance scattering by auroral
: steady state theory and observations from Svalbard. Ann Geophys 27(9): 3465–3478. https://doi.org/10.5194/angeo-27-3465-2009. [CrossRef] [Google Scholar]
- Kaladze TD, Pokhotelov OA, Shah HA, Khan MI, Stenflo L. 2008. Acoustic-gravity waves in the Earth’s ionosphere. J Atmos Sol Terr Phys 70(13): 1607–1616. https://doi.org/10.1016/j.jastp.2008.06.009. [CrossRef] [Google Scholar]
- Kaplan J. 1935. Light of the night sky. Planet Space Sci 47(279): 257. https://doi.org/10.1086/124605. [Google Scholar]
- Karpov IV, Kshevetskii SP. 2017. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth’s surface and influence of this heating on the wave propagation conditions. J Atmos Sol Terr Phys 164: 89–96. https://doi.org/10.1016/j.jastp.2017.07.019. [CrossRef] [Google Scholar]
- Kelley MC, Miller CA. 1997. Mid-latitude thermospheric plasma physics and electrodynamics: a review. J Atmos Sol Terr Phys 59: 1643–1654. https://doi.org/10.1016/S1364-6826(96)00163-0. [CrossRef] [Google Scholar]
- Kim H, Shiokawa K, Park J, Miyoshi Y, Miyashita Y, et al.. 2021. Isolated proton aurora driven by EMIC Pc1 Wave: PWING, Swarm, and NOAA POES multi-instrument observations. Geophys Res Lett 48(18): e95090. https://doi.org/10.1029/2021GL095090. [Google Scholar]
- Lilensten J, Blelly P-L. 2000. Du Soleil à la Terre: aéronomie et métérologie de l’espace. EDP Sciences, Paris. [Google Scholar]
- Lilensten J, Bommier V, Barthélemy M, Lamy H, Bernard D, IdarMoen J, Johnsen MG, Løvhaug UP, Pitout F. 2015. The auroral red line polarisation: modelling and measurements. J Space Weather Space Clim 5: A26. https://doi.org/10.1051/swsc/2015027. [CrossRef] [EDP Sciences] [Google Scholar]
- Lilensten J, Dudok de Wit T, Amblard P-O, Aboudarham J, Auchère F, Kretzschmar M. 2007. Recommendation for a set of solar EUV lines to be monitored for aeronomy applications. Ann Geophys 25: 1299–1310. https://doi.org/10.5194/angeo-25-1299-2007. [CrossRef] [Google Scholar]
- Lilensten J, Galand M. 1998. Proton-electron precipitation effects on the electron production and density above EISCAT (Tromsø) and ESR. Ann Geophys 16(10): 1299–1307. https://doi.org/10.1007/s00585-998-1299-8. [CrossRef] [Google Scholar]
- Lofthus A, Krupenie PH. 1977. The spectrum of molecular nitrogen. J Phys Chem Ref Data 6(1): 113–307. https://doi.org/10.1063/1.555546. [CrossRef] [Google Scholar]
- Lummerzheim D, Lilensten J. 1994. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann Geophys 12(10–11): 1039–1051. https://doi.org/10.1007/s00585-994-1039-7. [CrossRef] [Google Scholar]
- MacDonald E, Case N, Clayton J, Hall M, Heavner M, Lalone N, Patel K, Tapia A. 2015. Aurorasaurus: a citizen science platform for viewing and reporting the aurora. Space Weather 13(9): 548–559. https://doi.org/10.1002/2015SW001214. [CrossRef] [Google Scholar]
- Machol JL, Green JC, Redmon RJ, Viereck RA, Newell PT. 2012. Evaluation of OVATION Prime as a forecast model for visible aurorae. Space Weather 10(3): S03005. https://doi.org/10.1029/2011SW000746. [Google Scholar]
- Malville J. 1961. Excitation of helium in the aurora. J Atmos Terr Phys 21(1): 54–64. https://doi.org/10.1016/0021-9169(61)90191-X. [CrossRef] [Google Scholar]
- Marif H, Lilensten J. 2020. Suprathermal electron moments in the ionosphere. J Space Weather Space Clim 10: 22. https://doi.org/10.1051/swsc/2020021. [CrossRef] [EDP Sciences] [Google Scholar]
- Matzka J, Stolle C, Yamazaki Y, Bronkalla O, Morschhauser A. 2021. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 19: e2020SW002641. https://doi.org/10.1029/2020SW002641. [CrossRef] [Google Scholar]
- Megan Gillies D, Knudsen D, Donovan E, Jackel B, Gillies R, Spanswick E. 2017. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods. J Geophys Res Space Phys 122(8): 8181–8197. https://doi.org/10.1002/2016JA023758. [CrossRef] [Google Scholar]
- Miller JR, Shepherd GG. 1969. Rocket measurements of H beta production in a hydrogen aurora. J Geophys Res 74(21): 4987–4997. https://doi.org/10.1029/JA074i021p04987. [CrossRef] [Google Scholar]
- Nanjo S, Shiokawa K. 2024. Spatial structures of blue low-latitude aurora observed from Japan during the extreme geomagnetic storm of May 2024. Earth Planets Space 76: 156. https://doi.org/10.1186/s40623-024-02090-9. [CrossRef] [Google Scholar]
- Newell PT, Liou K, Zhang Y, Sotirelis T, Paxton LJ, Mitchell EJ. 2014. OVATION Prime – 2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather 12(6): 368–379. https://doi.org/10.1002/2014SW001056. [CrossRef] [Google Scholar]
- Nishimura Y, Verkhoglyadova O, Deng Y, Zhang S-R. 2022. Cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system. Elsevier. https://doi.org/10.1016/C2019-0-00526-2. [Google Scholar]
- Papitashvili NE, King JH. 2020. OMNI 5-min ACE [Data set]. NASA Space Physics Data Facility. https://doi.org/10.48322/gbpg-5r77, Accessed on March 26, 2025 [Google Scholar]
- Pakhotin IP, Burchill JK, Förster M, Lomidze L. 2022. The swarm Langmuir probe ion drift, density and effective mass (SLIDEM) product. Earth Planets Space 74(1): 109. https://doi.org/10.1186/s40623-022-01668-5. [CrossRef] [Google Scholar]
- Prösll MH. 2004. Physics of the Earth space environment. Springer. ISBN 3-540-21426-7. [Google Scholar]
- Rees MH. 1989. Physics and chemistry of the upper atmosphere. Cambridge University Press. ISBN 9780511573118. [CrossRef] [Google Scholar]
- Robert P, Dunlop MW. 2022. Use of twenty years CLUSTER/FGM data to observe the mean behavior of the magnetic field and current density of earth’s magnetosphere. J Geophys Res Space Phys 127(1): e29837. https://doi.org/10.1029/2021JA02983710.1002/essoar.10507700.1. [CrossRef] [Google Scholar]
- Romick GJ, Yee JH, Morgan MF, Morrison D, Paxton LJ, Meng CI. 1999. Polar cap optical observations of topside (>900 km) molecular nitrogen ions. Geophys Res Lett 26(7): 1003–1006. https://doi.org/10.1029/1999GL900091. [CrossRef] [Google Scholar]
- Schunk R, Nagy A. 2009. Ionospheres: physics, plasma physics, and chemistry. Cambridge Atmospheric and Space Science Series, Cambridge University Press. https://doi.org/10.1017/CBO9780511635342. [CrossRef] [Google Scholar]
-
Shemansky D, Donahue T, Zipf E. 1972. N2 positive and
band systems and the energy spectra of auroral electrons. Planet Space Sci 20(6): 905–917. https://doi.org/10.1016/0032-0633(72)90176-6. [CrossRef] [Google Scholar]
- Shiokawa K, Otsuka Y, Connors M. 2019. Statistical study of auroral/resonant-scattering 427.8-nm emission observed at subauroral latitudes over 14 years. J Geophys Res Space Phys 124(11): 9293–9301. https://doi.org/10.1029/2019JA026704. [CrossRef] [Google Scholar]
- Simon-Wedlund C, Lilensten J, Moen J, Holmes JM, Ogawa Y, Oksavik K, Denig WF. 2007. TRANS4: a new coupled electron/proton transport code – comparison to observations above Svalbard using ESR, DMSP and optical measurements. Ann Geophys 25(3): 661–673. https://doi.org/10.5194/angeo-25-661-2007. [CrossRef] [Google Scholar]
- Solomon SC. 2001. Auroral particle transport using Monte Carlo and hybrid methods. J Geophys Res 106(A1): 107–116. https://doi.org/10.1029/2000JA002011. [CrossRef] [Google Scholar]
- Störmer C. 1938. Blue sunlit aurora rays and their spectrum. Nature 142(3606): 1034. https://doi.org/10.1038/1421034a0. [CrossRef] [Google Scholar]
- Vegard L. 1939. Hydrogen showers in the auroral region. Nature 144(3661): 1089–1090. https://doi.org/10.1038/1441089b0. [Google Scholar]
- Witasse O, Lilensten J, Lathuillère C, Blelly PL. 1999. Modeling the OI 630.0 and 557.7 nm ther mospheric dayglow during EISCAT-WINDII coordinated measurements. J Geophys Res 104(A11): 24639–24656. https://doi.org/10.1029/1999JA900260. [CrossRef] [Google Scholar]
- Zhou S, Luan X, Burch JL, Yao Z, Han D-S, Tian C, Chen Y, Zhang J, Yu X, Dai T. 2021. A possible mechanism on the detachment between a subauroral proton arc and the auroral oval. J Geophys Res Space Physics. 126(2): e28493. https://doi.org/10.1029/2020JA028493. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.