Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/swsc/2025010 | |
Published online | 16 May 2025 |
- Acuña MH, Curtis D, Scheifele JL, Russell CT, Schroeder P, Szabo A, Luhmann JG. 2008. The STEREO/IMPACT magnetic field experiment. Space Sci Rev 136(1–4): 203–226. https://doi.org/10.1007/s11214-007-9259-2. [CrossRef] [Google Scholar]
- Al-Haddad N, Nieves-Chinchilla T, Savani NP, Lugaz N, Roussev II. 2018. Fitting and reconstruction of thirteen simple coronal mass ejections. Sol Phys 293(5): 73. https://doi.org/10.1007/s11207-018-1288-3. [CrossRef] [Google Scholar]
- Baker DN. 2012. Extreme space weather: forecasting behavior of a nonlinear dynamical system. Geophys Monogr Ser 196: 255–265. https://doi.org/10.1029/2011GM001075. [Google Scholar]
- Bale SD, Goetz K, Harvey PR, Turin P, Bonnell JW, et al. 2016. The FIELDS instrument suite for solar probe plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci Rev 204(1–4): 49–82. https://doi.org/10.1007/s11214-016-0244-5. [CrossRef] [Google Scholar]
- Benkhoff J, Murakami G, Baumjohann W, Besse S, Bunce E, et al. 2021. BepiColombo – mission overview and science goals. Space Sci Rev 217(8): 90. https://doi.org/10.1007/s11214-021-00861-4. [CrossRef] [Google Scholar]
- Cohen CMS, Leske RA, Christian ER, Cummings AC, de Nolfo GA, et al. 2024. Observations of the 2022 September 5 solar energetic particle event at 15 solar radii. Astrophys J 966(2): 148. https://doi.org/10.3847/1538-4357/ad37f8. [CrossRef] [Google Scholar]
- Davies EE, Rüdisser HT, Amerstorfer UV, Möstl C, Bauer M, et al. 2024. Flux rope modeling of the 2022 September 5 coronal mass ejection observed by Parker Solar Probe and Solar Orbiter from 0.07 to 0.69 au. Astrophys J 973(1): 51. https://doi.org/10.3847/1538-4357/ad64cb. [CrossRef] [Google Scholar]
- de León Alanís LA, González-Avilés JJ, Riley P, Ben-Nun M. 2024. Investigating the effects of numerical algorithms on global magnetohydrodynamics simulations of solar wind in the inner heliosphere. Revista Mexicana de Fisica 70(3): 031501. https://doi.org/10.31349/RevMexFis.70.031501. [Google Scholar]
- Ding Z, Li G, Mason G, Poedts S, Kouloumvakos A, Ho G, Wijsen N, Wimmer-Schweingruber RF, Rodríguez-Pacheco J. 2024. Modelling two energetic storm particle events observed by Solar Orbiter using the combined EUHFORIA and iPATH models. Astron Astrophys 681: A92. https://doi.org/10.1051/0004-6361/202347506. [CrossRef] [EDP Sciences] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162(1–2): 1–37. https://doi.org/10.1007/BF00733425. [CrossRef] [Google Scholar]
- Dryer M, Smith Z, Fry CD, Sun W, Deehr CS, Akasofu SI. 2004. Real-time shock arrival predictions during the “Halloween 2003 epoch”. Space Weather 2(9): S09001. https://doi.org/10.1029/2004SW000087. [CrossRef] [Google Scholar]
- Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell LA, Gibbs M, Burnett C. 2017. The economic impact of space weather: where do we stand? Risk Anal 37(2): 206–218. https://doi.org/10.1111/risa.12765. [CrossRef] [Google Scholar]
- Fox NJ, Velli MC, Bale SD, Decker R, Driesman A, et al. 2016. The solar probe plus mission: humanity’s first visit to our star. Space Sci Rev 204(1–4): 7–48. https://doi.org/10.1007/s11214-015-0211-6. [CrossRef] [Google Scholar]
- Galvin AB, Kistler LM, Popecki MA, Farrugia CJ, Simunac KDC, et al. 2008. The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci Rev 136: 437–486. https://doi.org/10.1007/s11214-007-9296-x. [CrossRef] [Google Scholar]
- Gosling JT. 1990. Coronal mass ejections and magnetic flux ropes in interplanetary space. Geophys Monogr Ser 58: 343–364. https://doi.org/10.1029/GM058p0343. [Google Scholar]
- Gosling JT, McComas DJ, Phillips JL, Pizzo VJ, Goldstein BE, Forsyth RJ, Lepping RP. 1995. A CME-driven solar wind disturbance observed at both low and high heliographic latitudes. Geophys Res Lett 22(13): 1753–1756. https://doi.org/10.1029/95GL01776. [CrossRef] [Google Scholar]
- Heyner D, Auster HU, Fornaçon KH, Carr C, Richter I, et al. 2021. The BepiColombo planetary magnetometer MPO-MAG: what can we learn from the hermean magnetic field? Space Sci Rev 217(4): 52. https://doi.org/10.1007/s11214-021-00822-x. [CrossRef] [Google Scholar]
- Horbury TS, O’Brien H, Carrasco Blazquez I, Bendyk M, Brown P, et al. 2020. The Solar Orbiter magnetometer. Astron Astrophys 642: A9. https://doi.org/10.1051/0004-6361/201937257. [CrossRef] [EDP Sciences] [Google Scholar]
- Hu Q, Sonnerup B. 2002. Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J Geophys Res 107(A7): SSH-10. https://doi.org/10.1029/2001JA000293. [Google Scholar]
- Hundhausen AJ. 1973. Evolution of large-scale solar wind structures beyond 1 AU. J Geophys Res 78(13): 2035. https://doi.org/10.1029/JA078i013p02035. [CrossRef] [Google Scholar]
- Hundhausen AJ. 1985. Some macroscopic properties of shock waves in the heliosphere. Geophys Monogr Ser 34: 37–58. https://doi.org/10.1029/GM034p0037. [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, Cyr St. OC, Guhathakurta M, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136: 5–16. https://doi.org/10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Kasper JC, Abiad R, Austin G, Balat-Pichelin M, Bale SD, et al. 2016. Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci Rev 204(1–4): 131–186. https://doi.org/10.1007/s11214-015-0206-3. [CrossRef] [Google Scholar]
- Kilpua E, Koskinen HEJ, Pulkkinen TI. 2017. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev Sol Phys 14(1): 5. https://doi.org/10.1007/s41116-017-0009-6. [CrossRef] [Google Scholar]
- Ledvina VE, Palmerio E, Kay C, Al-Haddad N, Riley P. 2023. Modeling CME encounters at Parker Solar Probe with OSPREI: dependence on photospheric and coronal conditions. Astron Astrophys 673: A96. [CrossRef] [EDP Sciences] [Google Scholar]
- Liu YD, Zhu B, Ran H, Hu H, Liu M, Zhao X, Wang R, Stevens ML, Bale SD. 2024. Direct in situ measurements of a fast coronal mass ejection and associated structures in the corona. Astrophys J 963(2): 85. https://doi.org/10.3847/1538-4357/ad1e56. [CrossRef] [Google Scholar]
- Livi R, Larson DE, Kasper JC, Abiad R, Case AW, et al. 2022. The Solar Probe ANalyzer-ions on the Parker Solar Probe. Astrophys J 938(2): 138. https://doi.org/10.3847/1538-4357/ac93f5. [CrossRef] [Google Scholar]
- Long DM, Green LM, Pecora F, Brooks DH, Strecker H, et al. 2023. The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe. Astrophys J 955(2): 152. https://doi.org/10.3847/1538-4357/acefd5. [CrossRef] [Google Scholar]
- Luhmann JG, Curtis DW, Schroeder P, McCauley J, Lin RP, et al. 2008. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci Rev 136: 117–184. https://doi.org/10.1007/s11214-007-9170-x. [CrossRef] [Google Scholar]
- Manchester I, Ward B, Vourlidas A, Tóth G, Lugaz N, Roussev II, Sokolov IV, Gombosi TI, De Zeeuw DL, Opher M. 2008. Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: comparison with LASCO coronagraph observations. Astrophys J 684(2): 1448–1460. https://doi.org/10.1086/590231. [CrossRef] [Google Scholar]
- Manchester WB, Gombosi TI, Roussev I, de Zeeuw DL, Sokolov IV, Powell KG, Tóth G, Opher M. 2004. Three-dimensional MHD simulation of a flux rope driven CME. J Geophys Res (Space Phys) 109(A1): A01102. https://doi.org/10.1029/2002JA009672. [Google Scholar]
- Mayank P, Vaidya B, Mishra W, Chakrabarty D. 2024. SWASTi-CME: a physics-based model to study coronal mass ejection evolution and its interaction with solar wind. Astrophys J Suppl 270(1): 10. https://doi.org/10.3847/1538-4365/ad08c7. [CrossRef] [Google Scholar]
- McComas DJ, Riley P, Gosling JT, Balogh A, Forsyth R. 1998. Ulysses’ rapid crossing of the polar coronal hole boundary. J Geophys Res 103(A2): 1955–1967. https://doi.org/10.1029/97JA01459. [CrossRef] [Google Scholar]
- Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A. 2007. PLUTO: a numerical code for computational astrophysics. Astrophys J Suppl 170(1): 228–242. https://doi.org/10.1086/513316. [CrossRef] [Google Scholar]
- Müller D, Cyr St. OC, Zouganelis I, Gilbert HR, Marsden R, et al. 2020. The Solar Orbiter mission. Science overview. Astron Astrophys 642: A1. https://doi.org/10.1051/0004-6361/202038467. [CrossRef] [EDP Sciences] [Google Scholar]
- Odstrcil D. 2009. Numerical simulation of interplanetary disturbances. In: Pogorelov NV, Audit E, Colella P, Zank GP (Eds.), Numerical modeling of space plasma flows: ASTRONUM-2008, vol. 406 of Astronomical society of the pacific conference series, p. 141. [Google Scholar]
- Odstrcil D, Pizzo VJ. 2009. Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Sol Phys 259: 297–309. https://doi.org/10.1007/s11207-009-9449-z. [CrossRef] [Google Scholar]
- Ogilvie KW, Desch MD. 1997. The wind spacecraft and its early scientific results. Adv Space Res 20(4–5): 559–568. https://doi.org/10.1016/S0273-1177(97)00439-0. [CrossRef] [Google Scholar]
- Orsini S, Livi SA, Lichtenegger H, Barabash S, Milillo A, et al. 2021. SERENA: particle instrument suite for determining the sun-mercury interaction from BepiColombo. Space Sci Rev 217(1): 11. https://doi.org/10.1007/s11214-020-00787-3. [CrossRef] [Google Scholar]
- Owen CJ, Bruno R, Livi S, Louarn P, Al Janabi K, et al. 2020. The Solar Orbiter solar wind analyser (SWA) suite. Astron Astrophys 642: A16. https://doi.org/10.1051/0004-6361/201937259. [CrossRef] [EDP Sciences] [Google Scholar]
- Owens M, Lang M, Barnard L, Riley P, Ben-Nun M, Scott CJ, Lockwood M, Reiss MA, Arge CN, Gonzi S. 2020. A computationally efficient, time-dependent model of the solar wind for use as a surrogate to three-dimensional numerical magnetohydrodynamic simulations. Sol Phys 295(3): 43. https://doi.org/10.1007/s11207-020-01605-3. [CrossRef] [Google Scholar]
- Palmerio E, Carcaboso F, Khoo LY, Salman TM, Sánchez-Cano B, et al. 2024. On the mesoscale structure of coronal mass ejections at Mercury’s Orbit: BepiColombo and Parker Solar Probe observations. Astrophys J 963(2): 108. https://doi.org/10.3847/1538-4357/ad1ab4. [CrossRef] [Google Scholar]
- Palmerio E, Linker J, Downs C, Torok T, Riley P, Caplan RM, Linton M. 2023. Global modelling of the labor day CME observed in the corona by Parker Solar Probe. In: AGU fall meeting abstracts, vol. 2023, pp. SH31D–3004. [Google Scholar]
- Paouris E, Vourlidas A, Kouloumvakos A, Papaioannou A, Jagarlamudi VK, Horbury T. 2023. The space weather context of the first extreme event of solar cycle 25, on 2022 September 5. Astrophys J 956(1): 58. https://doi.org/10.3847/1538-4357/acf30f. [CrossRef] [Google Scholar]
- Patel R, West MJ, Seaton DB, Hess P, Niembro T, Reeves KK. 2023. The closest view of a fast coronal mass ejection: how faulty assumptions near perihelion lead to unrealistic interpretations of PSP/WISPR observations. Astrophys J Lett 955(1): L1. https://doi.org/10.3847/2041-8213/acf2f0. [CrossRef] [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Sol Phys 275(1–2): 3–15. https://doi.org/10.1007/s11207-011-9841-3. [Google Scholar]
- Pizzo VJ, de Koning C, Cash M, Millward G, Biesecker DA, Puga L, Codrescu M, Odstrcil D. 2015. Theoretical basis for operational ensemble forecasting of coronal mass ejections. Space Weather 13(10): 676–697. https://doi.org/10.1002/2015SW001221. [CrossRef] [Google Scholar]
- Pluta A, Mrotzek N, Vourlidas A, Bothmer V, Savani N. 2019. Combined geometrical modelling and white-light mass determination of coronal mass ejections. Astron Astrophys 623: A139. https://doi.org/10.1051/0004-6361/201833829. [CrossRef] [EDP Sciences] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Powell KG. 1997. An approximate Riemann solver for magnetohydrodynamics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 570–583. https://doi.org/10.1007/978–3-642–60543-7_23. [Google Scholar]
- PSI. 2024. pysunrunner: a python tool for running and managing solar models. https://github.com/predsci/pysunrunner. Accessed: 2024-10-02. [Google Scholar]
- Riley P. 1999. CME dynamics in a structured solar wind. In: Habbal SR, Esser R, Hollweg JV, Isenberg PA (Eds.), Solar wind nine, vol. 471 of American institute of physics conference series. AIP, pp. 131–136. https://doi.org/10.1063/1.58741. [Google Scholar]
- Riley P, Ben-Nun M. 2021. On the sources and sizes of uncertainty in predicting the arrival time of interplanetary coronal mass ejections using global MHD models. Space Weather 19(6): e2021SW002775. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Ben-Nun M. 2022. sunRunner1D: a tool for exploring ICME evolution through the inner heliosphere. Universe 8(9): 447. https://doi.org/10.3390/universe8090447. [CrossRef] [Google Scholar]
- Riley P, Caplan RM, Downs C, Linker JA, Lionello R. 2022. Comparing and contrasting the properties of the inner heliosphere for the three most recent solar minima. J Geophys Res (Space Phys) 127(8): e30261. https://doi.org/10.1029/2022JA030261. [Google Scholar]
- Riley P, Caplan RM, Giacalone J, Lario D, Liu Y. 2016. Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys J 819: 57. https://doi.org/10.3847/0004-637X/819/1/57. [CrossRef] [Google Scholar]
- Riley P, Gosling JT. 1998. Do coronal mass ejections implode in the solar wind? Geophys Res Lett 25(9): 1529–1532. https://doi.org/10.1029/98GL01057. [CrossRef] [Google Scholar]
- Riley P, Gosling JT, Pizzo VJ. 1997. A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection. J Geophys Res 102(A7): 14677–14686. https://doi.org/10.1029/97JA01131. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: the power and limitations of global MHD modeling. J Atmos Sol Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Riley P, Lionello R, Caplan RM, Downs C, Linker JA, Badman ST, Stevens ML. 2021. Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models. Astron Astrophys 650: A19. [CrossRef] [EDP Sciences] [Google Scholar]
- Riley P, Lionello R, Mikić Z, Linker J. 2008. Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys J 672: 1221–1227. https://doi.org/10.1086/523893. [CrossRef] [Google Scholar]
- Rochus P, Auchère F, Berghmans D, Harra L, Schmutz W, et al. 2020. The Solar Orbiter EUI instrument: the extreme ultraviolet imager. Astron Astrophys 642: A8. https://doi.org/10.1051/0004-6361/201936663. [CrossRef] [EDP Sciences] [Google Scholar]
- Romeo OM, Braga CR, Badman ST, Larson DE, Stevens ML, et al. 2023. Near-sun in situ and remote-sensing observations of a coronal mass ejection and its effect on the heliospheric current sheet. Astrophys J 954(2): 168. https://doi.org/10.3847/1538-4357/ace62e. [CrossRef] [Google Scholar]
- Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275(1–2): 207–227. https://doi.org/10.1007/s11207-011-9834-2. [CrossRef] [Google Scholar]
- Smith CW, L’Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The ACE magnetic fields experiment. Space Sci Rev 86: 613–632. https://doi.org/10.1023/A:1005092216668. [CrossRef] [Google Scholar]
- Stone EC, Frandsen AM, Mewaldt RA, Christian ER, Margolies D, Ormes JF, Snow F. 1998. The advanced composition explorer. Space Sci Rev 86: 1–22. https://doi.org/10.1023/A:1005082526237. [CrossRef] [Google Scholar]
- Temmer M, Nitta NV. 2015. Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol Phys 290(3): 919–932. https://doi.org/10.1007/s11207-014-0642-3. [CrossRef] [Google Scholar]
- Thernisien A. 2011. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys J Suppl 194(2): 33. https://doi.org/10.1088/0067-0049/194/2/33. [CrossRef] [Google Scholar]
- Török T, Downs C, Linker JA, Lionello R, Titov VS, Mikić Z, Riley P, Caplan RM, Wijaya J. 2018. Sun-to-earth MHD simulation of the 2000 July 14 “Bastille Day” eruption. Astrophys J 856(1): 75. https://doi.org/10.3847/1538-4357/aab36d. [CrossRef] [Google Scholar]
- Totten TL, Freeman JW, Arya S. 1996. Application of the empirically derived polytropic index for the solar wind to models of solar wind propagation. J Geophys Res 101(A7): 15629–15636. https://doi.org/10.1029/96JA01019. [CrossRef] [Google Scholar]
- Trotta D, Larosa A, Nicolaou G, Horbury TS, Matteini L, et al. 2024. Properties of an interplanetary shock observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter. Astrophys J 962(2): 147. https://doi.org/10.3847/1538-4357/ad187d. [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S. 2003. The extreme magnetic storm of 1–2 September 1859. J Geophys Res (Space Phys) 108(A7): 1268. https://doi.org/10.1029/2002JA009504. [Google Scholar]
- Vourlidas A, Howard RA, Plunkett SP, Korendyke CM, Thernisien AFR, et al. 2016. The wide-field imager for solar probe plus (WISPR). Space Sci Rev 204(1–4): 83–130. https://doi.org/10.1007/s11214-014-0114-y. [CrossRef] [Google Scholar]
- Weiss AJ, Möstl C, Davies EE, Amerstorfer T, Bauer M, et al. 2021. Multi-point analysis of coronal mass ejection flux ropes using combined data from Solar Orbiter, BepiColombo, and wind. Astron Astrophys 656: A13. https://doi.org/10.1051/0004-6361/202140919. [CrossRef] [EDP Sciences] [Google Scholar]
- Whittlesey PL, Larson DE, Kasper JC, Halekas J, Abatcha M, et al. 2020. The Solar Probe ANalyzers—electrons on the Parker Solar Probe. Astrophys J Suppl 246(2): 74. https://doi.org/10.3847/1538-4365/ab7370. [CrossRef] [Google Scholar]
- Winslow RM, Lugaz N, Schwadron NA, Farrugia CJ, Yu W, Raines JM, Mays ML, Galvin AB, Zurbuchen TH. 2016. Longitudinal conjunction between MESSENGER and STEREO A: development of ICME complexity through stream interactions. J Geophys Res (Space Phys) 121(7): 6092–6106. https://doi.org/10.1002/2015JA022307. [CrossRef] [Google Scholar]
- Zhang B, Sorathia KA, Lyon JG, Merkin VG, Wiltberger M. 2019. Conservative averaging-reconstruction techniques (Ring Average) for 3-D finite-volume MHD solvers with axis singularity. J Comput Phys 376: 276–294. https://doi.org/10.1016/j.jcp.2018.08.020. [CrossRef] [Google Scholar]
- Zurbuchen TH, Richardson IG. 2006. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev 123: 31–43. https://doi.org/10.1007/s11214-006-9010-4. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.