Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/swsc/2024038 | |
Published online | 07 January 2025 |
- Abadi P, Saito S, Srigutomo W. 2014. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Ann Geophys 32(1): 7–17. https://doi.org/10.5194/angeo-32-7-2014. [CrossRef] [Google Scholar]
- Adkins VJ, England SL. 2023. Automated detection and tracking of equatorial plasma bubbles utilizing global-scale observations of the limb and disk (GOLD) 135.6 nm data. Earth Space Sci 10(10): e2023EA002935. https://doi.org/10.1029/2023EA002935. [CrossRef] [Google Scholar]
- Belehaki A, Häggström I, Kiss T, Galkin I, Tjulin A, PITHIA-NRF Consortium. 2023. PITHIA-NRF The integration project for an advanced plasmasphere, ionosphere and thermosphere research environment. https://doi.org/10.5281/zenodo.10145053. [Google Scholar]
- Bhattacharyya A. 2022. Equatorial plasma bubbles: a review. Atmosphere 13(10): 1637. https://doi.org/10.3390/atmos13101637. [CrossRef] [Google Scholar]
- Blanch E, Altadill D, Juan J, Camps A, Barbosa J, González-Casado G, Riba J, Sanz J, Vazquez G, Orús-Pérez R. 2018. Improved characterization and modeling of equatorial plasma depletions. J Space Weather Space Clim 8: A38. https://doi.org/10.1051/swsc/2018026. [CrossRef] [EDP Sciences] [Google Scholar]
- Booker HG, Wells HW. 1938. Scattering of radio waves by the F-region of the ionosphere. Terr Mag Atmos Electr 43(3): 249–256. https://doi.org/10.1029/TE043i003p00249. [CrossRef] [Google Scholar]
- Calabia A, Imtiaz N, Altadill D, Yasyukevich Y, Segarra A, Prol FS, Adhikari B, del Peral L, Rodriguez Frias MD, Molina I. 2024. Uncovering the drivers of responsive ionospheric dynamics to severe space weather conditions: a coordinated multi-instrumental approach. J Geophys Res Space Phys 129(3): e2023JA031862. https://doi.org/10.1029/2023JA031862. [CrossRef] [Google Scholar]
- Cesaroni C, Spogli L, Franceschi GD, Damaceno JG, Grzesiak M, Vani B, Monico JFG, Romano V, Alfonsi L, Cafaro M. 2021. A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes. Earth Planet Phys 5(5): 450–461. https://doi.org/10.26464/epp2021042. [Google Scholar]
- Chapagain NP, Makela JJ, Meriwether JW, Fisher DJ, Buriti RA, Medeiros AF. 2012. Comparison of nighttime zonal neutral winds and equatorial plasma bubble drift velocities over Brazil. J Geophys Res Space Phys 117: A06309. https://doi.org/10.1029/2012JA017620. [Google Scholar]
- Chen J, Zhong J, Hao Y, Wan X, Li Q, et al. 2023. Horizontal spatial correlation of the ionospheric day-to-day variations at low latitudes based on GOLD Nmax data. Space Weather 21(12): e2023SW003627. https://doi.org/10.1029/2023SW003627. [CrossRef] [Google Scholar]
- Christovam AL, Prol FS, Hernández-Pajares M, Camargo PO. 2023. Plasma bubble imaging by single-frequency GNSS measurements. GPS Solut 27(3): 124. https://doi.org/10.1007/s10291-023-01463-z. [CrossRef] [Google Scholar]
- Dungey J. 1956. Convective diffusion in the equatorial F region. J Atmos Terr Phys 9(5–6): 304–310. https://doi.org/10.1016/0021-9169(56)90148-9. [CrossRef] [Google Scholar]
- Feller W. 1948. On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann Math Stat 19(2): 177–189. https://doi.org/10.1214/aoms/1177730243. [CrossRef] [Google Scholar]
- Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, et al. 1997. Equatorial scintillation and systems support. Radio Sci 32(5): 2047–2064. https://doi.org/10.1029/97RS00836. [CrossRef] [Google Scholar]
- Haase JS, Dautermann T, Taylor MJ, Chapagain N, Calais E, Pautet D. 2011. Propagation of plasma bubbles observed in Brazil from GPS and airglow data. Adv Space Res 47(10): 1758–1776. https://doi.org/10.1016/j.asr.2010.09.025. [CrossRef] [Google Scholar]
- Haaser RA, Earle GD, Heelis RA, Klenzing J, Stoneback R, Coley WR, Burrell AG. 2012. Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum. J Geophys Res Space Phys 117, A10305. https://doi.org/10.1029/2012JA017814. [CrossRef] [Google Scholar]
- Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, et al. 2020. Array programming with NumPy. Nature 585(7825): 357–362. https://doi.org/10.1038/s41586-020-2649-2. [NASA ADS] [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res Space Phys 111(A7). https://doi.org/10.1029/2005JA011474. [CrossRef] [Google Scholar]
- Ji S, Chen W, Weng D, Wang Z. 2015. Characteristics of equatorial plasma bubble zonal drift velocity and tilt based on Hong Kong GPS CORS network: from 2001 to 2012. J Geophys Res Space Phys 120(8): 7021–7029. https://doi.org/10.1002/2015JA021493-T. [CrossRef] [Google Scholar]
- Jordahl K, den Bossche JV, Fleischmann M, Wasserman J, McBride J, et al. 2020. Geopandas/geopandas: v0.8.1. https://doi.org/10.5281/zenodo.3946761. [Google Scholar]
- Kapil C, Seemala GK. 2024. Machine learning approach for detection of plasma depletions from TEC. Adv Space Res 73(7): 3833–3844. https://doi.org/10.1016/j.asr.2023.04.042. [CrossRef] [Google Scholar]
- Karan DK, Daniell RE, England SL, Martinis CR, Eastes RW, Burns AG, McClintock WE. 2020. First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data. J Geophys Res Space Phys 125(9): e2020JA028173. https://doi.org/10.1029/2020JA028173. [CrossRef] [Google Scholar]
- Karan DK, Eastes RW, Daniell RE, Martinis CR, McClintock WE. 2023. GOLD Mission’s observation about the geomagnetic storm effects on the nighttime equatorial ionization anomaly (EIA) and equatorial plasma bubbles (EPB) during a solar minimum equinox. Space Weather 21(3): e2022SW003321. https://doi.org/10.1029/2022SW003321. [CrossRef] [Google Scholar]
- Kelley MC. 2009. The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press. ISBN 978-0-12-088425-4. [Google Scholar]
- Kumar S, Singh A. 2009. Variation of ionospheric total electron content in Indian low latitude region of the equatorial anomaly during May 2007–April 2008. Adv Space Res 43(10): 1555–1562. https://doi.org/10.1016/j.asr.2009.01.037. [CrossRef] [Google Scholar]
- Lebyodkin MA, Shashkov IV, Lebedkina TA, Mathis K, Dobron P, Chmelik F. 2013. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Phys Rev E 88: 042402. https://doi.org/10.1103/PhysRevE.88.042402. [CrossRef] [Google Scholar]
- Li D, Zou Y. 2016. Automatic detection of ionospheric TEC depletions by using low-latitude GNSS data. In: 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, pp. 320–322. https://doi.org/10.1109/ISAPE.2016.7833952. [Google Scholar]
- Li Q, Zhu Y, Wang Z, Fang K. 2021. A method for automatic detection and characterization of plasma bubbles using GPS and BDS data. Chin J Aeronaut 34(5): 195–204. https://doi.org/10.1016/j.cja.2020.10.014. [CrossRef] [Google Scholar]
- Lv M, Tang Q, Qiao J, Qiao W, Zhou C. 2024.Statistical analysis of ionospheric correlation for shortwave system. Radio Sci 59(4): e2023RS007893. https://doi.org/10.1029/2023RS007893. [CrossRef] [Google Scholar]
- Lynn KJW, Otsuka Y, Shiokawa K. 2011. Simultaneous observations at Darwin of equatorial bubbles by ionosonde-based range/time displays and airglow imaging. Geophys Res Lett 38: L23101. https://doi.org/10.1029/2011GL049856. [Google Scholar]
- Magdaleno S, Herraiz M, Radicella SM. 2012. Ionospheric bubble seeker: a Java application to detect and characterize ionospheric plasma depletion from GPS data. IEEE Trans Geosci Remote Sens 50(5): 1719–1727. https://doi.org/10.1109/TGRS.2011.2168965. [CrossRef] [Google Scholar]
- Mannucci AJ, Wilson BD, Edwards CD. 1993. A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1993), Salt Lake City, UT, September 22–24, Institute of Navigation, pp. 1323–1332. [Google Scholar]
- McNamara L, Caton R, Parris R, Pedersen T, Thompson D, Wiens K, Groves K. 2013. Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms. Radio Sci 48(2): 89–101. https://doi.org/10.1002/rds.20025. [CrossRef] [Google Scholar]
- Mersha MW, Lewi E, Jakowski N, Wilken V, Berdermann J, Kriegel M, Damtie B. 2020.A method for automatic detection of plasma depletions by using GNSS measurements. Radio Sci 55(3): e2019RS006978. https://doi.org/10.1029/2019RS006978. [CrossRef] [Google Scholar]
- Moraes ADO, Vani BC, Costa E, Abdu MA, de Paula ER, Sousasantos J, Monico JFG, Forte B, de Siqueira Negreti PM, Shimabukuro MH. 2018.GPS availability and positioning issues when the signal paths are aligned with ionospheric plasma bubbles. GPS Solut 22(4): 95. https://doi.org/10.1007/s10291-018-0760-8. [CrossRef] [Google Scholar]
- Muella MT, de Paula ER, Jonah OF. 2014. GPS L1-frequency observations of equatorial scintillations and irregularity zonal velocities. Surv Geophys 35: 335–357. https://doi.org/10.1007/s10712-013-9252-0. [CrossRef] [Google Scholar]
- Muella MT, de Paula ER, Monteiro AA. 2013. Ionospheric scintillation and dynamics of Fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv Geophys 34: 233–251. https://doi.org/10.1007/s10712-012-9212-0. [CrossRef] [Google Scholar]
- Navas-Portella V. 2020. Statistical modelling of avalanche observables: criticality and universality. PhD Thesis, Universitat de Barcelona. Available at http://hdl.handle.net/2445/173846. [Google Scholar]
- Nishioka M, Saito A, Tsugawa T. 2008. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J Geophys Res Space Phys 113(A5). https://doi.org/10.1029/2007ja012605. [CrossRef] [Google Scholar]
- Oppenheim AV, Schafer RW, Buck JR. 2001. Discrete-time signal processing, 2nd edn. Prentice-Hall Signal Processing Series. Prentice Hall, Upper Saddle River, NJ. ISBN 0137549202. [Google Scholar]
- Patil AS, Nade DP, Taori A, Pawar RP, Pawar SM, Nikte SS, Pawar SD. 2023. A brief review of equatorial plasma bubbles. Space Sci Rev 219(1): 16. https://doi.org/10.1007/s11214-023-00958-y. [CrossRef] [Google Scholar]
- Piñal Moctezuma F, Delgado Prieto M, Romeral Martínez L. 2019. Performance analysis of acoustic emission hit detection methods using time features. IEEE Access 7: 71119–71130. https://doi.org/10.1109/ACCESS.2019.2919224. [CrossRef] [Google Scholar]
- Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1996. Numerical recipes in Fortran 90 the art of parallel scientific computing. Cambridge University Press, Melbourne, Australia. ISBN 978-0-521-57439-6. [Google Scholar]
- Rawer K. 1963. Propagation of decameter waves (HF band). In: Meteorological and astronomical influences on radio wave propogation, Landmark B (Ed.), Pergamon Press, New York, pp. 221–250. [Google Scholar]
- Reddy SA, Forsyth C, Aruliah A, Smith A, Bortnik J, Aa E, Kataria DO, Lewis G. 2023. Predicting swarm equatorial plasma bubbles via machine learning and shapley values. J Geophys Res Space Phys 128(6): e2022JA031183. https://doi.org/10.1029/2022JA031183. [CrossRef] [Google Scholar]
- Reinisch B, Huang X, Galkin I, Paznukhov V, Kozlov A. 2005. Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. J Atmos Sol-Terr Phys 67(12): 1054–1062. https://doi.org/10.1016/j.jastp.2005.01.009. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planet Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Sanz J, Hernandez-Pajares M, Zornoza JMJ. 2013. GNSS data processing: fundamentals and algorithms. ESA TM, European Space Agency. ISBN 9789292218867. [Google Scholar]
- Sarudin I, Hamid NSA, Abdullah M, Buhari SM. 2017. Investigation of zonal velocity of equatorial plasma bubbles (EPBs) by using GPS data. J Phys Conf Ser 852(1): 012014. https://doi.org/10.1088/1742-6596/852/1/012014. [CrossRef] [Google Scholar]
- Seemala GK, Valladares CE. 2011. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci 46: RS5019. https://doi.org/10.1029/2011RS004722. [Google Scholar]
- Silva RP, Souza JR, Sobral JHA, Denardini CM, Borba GL, Santos MAF. 2019. Ionospheric plasma bubble zonal drift derived from total electron content measurements. Radio Sci 54(7): 580–589. https://doi.org/10.1029/2018RS006727. [CrossRef] [Google Scholar]
- Smith SW. 2003. Digital signal processing: a practical guide for engineers and scientists. Demystifying technology series. Newnes Amsterdam, Amsterdam. ISBN 9780750674447. [Google Scholar]
- Souza ALC, Camargo PO, Muella MTAH, Tardelli-Coelho F. 2021. Drift velocity estimation of ionospheric bubbles using GNSS observations. Radio Sci 56(8): e2020RS007220. https://doi.org/10.1029/2020RS007220. [CrossRef] [Google Scholar]
- The MathWorks Inc. 2022. MATLAB version: 9.13.0 (R2022b). Available at https://www.mathworks.com. [Google Scholar]
- Tsunoda RT, Livingston RC, McClure J, Hanson W. 1982. Equatorial plasma bubbles: vertically elongated wedges from the bottomside F layer. J Geophys Res Space Phys 87(A11): 9171–9180. https://doi.org/10.1029/JA087iA11p09171. [CrossRef] [Google Scholar]
- Unnikrishnan K, Sreekumar H, Choudhary RK, Ashna VM, Ambili KM, Shreedevi PR, Rao PB. 2017. A study on the evolution of plasma bubbles using the single station-multisatellite and multistation-single satellite techniques. J Geophys Res Space Phys 122(3): 3678–3688. https://doi.org/10.1002/2016JA023503. [CrossRef] [Google Scholar]
- Van Rossum G, Drake FL. 2009. Python 3 reference manual. CreateSpace, Scotts Valley, CA. [Google Scholar]
- Vargas F, Brum C, Terra P, Gobbi D. 2020. Mean zonal drift velocities of plasma bubbles estimated from keograms of nightglow all-sky images from the Brazilian sector. Atmosphere 11(1): 69. https://doi.org/10.3390/atmos11010069. [CrossRef] [Google Scholar]
- Wakai N, Ohyama H, Koizumi T. 1987. Manual of ionogram scaling. Radio Research Laboratory, Ministry of Posts and Telecommunications, Japan. [Google Scholar]
- Wu K, Xu J, Wang W, Sun L, Liu X, Yuan W. 2017. Interesting equatorial plasma bubbles observed by all-sky imagers in the equatorial region of China. J Geophys Res Space Phys 122(10): 10596–10611. https://doi.org/10.1002/2017JA024561. [Google Scholar]
- Yu T, Li M, Xia C, Zuo X, Liu Z, Zhao B. 2018. A new method for deriving equatorial plasma bubble velocity by tracing OI 630 nm all-sky images. J Geophys Res Space Phys 123(11): 9619–9633. https://doi.org/10.1029/2018JA025332. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.