Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2024039 | |
Published online | 24 January 2025 |
- Abramowitz A, Stegun I. 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York. [Google Scholar]
- Afanasiev A, Battarbee M, Vainio R. 2015. Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: Effect of anisotropic pitch-angle scattering of particles. A&A 584: A81. https://doi.org/10.1051/0004-6361/201526750. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Afanasiev A, Vainio R, Trotta D, Nyberg S, Talebpour Sheshvan N, Hietala H, Dresing N. 2023. Self-consistent modeling of the energetic storm particle event of November 10, 2012. A&A 679: A111. https://doi.org/10.1051/0004-6361/202346220. [CrossRef] [EDP Sciences] [Google Scholar]
- Agueda N, Vainio N. 2013. On the parametrization of the energetic-particle pitch-angle diffusion coefficient. J Space Weather Space Clim 3(27): A10. https://doi.org/10.1051/swsc/2013034. [CrossRef] [EDP Sciences] [Google Scholar]
- Baker DN. 2005. Specifying and forecasting SpaceWeather threats to human technology. In: Effects of SpaceWeather on technology infrastructure, Daglis IA (Ed.), Springer, Netherlands, Dordrecht, pp. 1–25. ISBN 978-1-4020-2754-3. [Google Scholar]
- Battarbee M, Vainio R, Laitinen T, Hietala H. 2013. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity. A&A 558: A110. https://doi.org/10.1051/0004-6361/201321348. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bell AR. 1978. The acceleration of cosmic rays in shock fronts – I. Mon Not R Astron Soc 182: 147–156. https://doi.org/10.1093/mnras/182.2.147. [CrossRef] [Google Scholar]
- Berezhko EG, Taneev SN. 2016. Particle acceleration and Alfvén wave generation by an interplanetary shock. Astron Lett 42(2): 126–135. https://doi.org/10.1134/S1063773716010011. [CrossRef] [Google Scholar]
- Bieber JW, Matthaeus WH, Smith CW, Wanner W, Kallenrode M-B, Wibberenz G. 1994. Proton and electron mean free paths: the Palmer consensus revisited. Astrophys J 420: 294. https://doi.org/10.1086/173559. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Ding Z, Li G, Mason G, Poedts S, Kouloumvakos A, Ho G, Wijsen N, Wimmer-Schweingruber RF, Rodríguez-Pacheco J. 2024. Modelling two energetic storm particle events observed by solar orbiter using the combined EUHFORIA and iPATH models. A&A 681: A92. https://doi.org/10.1051/0004-6361/202347506. [CrossRef] [EDP Sciences] [Google Scholar]
- Ding Z, Wijsen N, Li G, Poedts S. 2022. Modeling the 2020 November 29 solar energetic particle event using EUHFORIA and iPATH models. A&A 668: A71. https://doi.org/10.1051/0004-6361/202244732. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Drury LO. 1983. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep Prog Phys 46(8): 973–1027. https://doi.org/10.1088/0034-4885/46/8/002. [CrossRef] [Google Scholar]
- Giacalone J. 2012. Energetic charged particles associated with strong interplanetary shocks. Astrophys J 761(1): 28. https://doi.org/10.1088/0004-637X/761/1/28. [CrossRef] [Google Scholar]
- Gold RE, Krimigis SM, Hawkins SE III, Haggerty DK, Lohr DA, Fiore E, Armstrong TP, Holland G, Lanzerotti LJ. 1998. Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci Rev 86: 541–562. https://doi.org/10.1023/A:1005088115759. [CrossRef] [Google Scholar]
- Hasselmann K, Wibberenz G. 1970. A note on the parallel diffusion coefficient. Astrophys J 162: 1049. https://doi.org/10.1086/150736. [CrossRef] [Google Scholar]
- Hu J, Li G, Ao X, Zank GP, Verkhoglyadova O. 2017. Modeling particle acceleration and transport at a 2-D CME-driven shock. J Geophys Res 122(11): 10938–10963. https://doi.org/10.1002/2017JA024077. [Google Scholar]
- Jiggens P, Heynderickx D, Sandberg I, Truscott P, Raukunen O, Vainio R. 2018. Updated model of the solar energetic proton environment in space. J Space Weather Space Clim 8: A31. https://doi.org/10.1051/swsc/2018010. [CrossRef] [EDP Sciences] [Google Scholar]
- Jokipii JR. 1966. Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys J 146: 480. https://doi.org/10.1086/148912. [CrossRef] [Google Scholar]
- Klimas AJ, Sandri G. 1971. Foundation of the theory of cosmic-ray transport in random magnetic fields. Astrophys J 169: 41. https://doi.org/10.1086/151116. [CrossRef] [Google Scholar]
- Lario D, Berger L, Wilson III LB, Decker RB, Haggerty DK, Roelof EC, Wimmer-Schweingruber RF, Giacalone J. 2018. Flat proton spectra in large solar energetic particle events. J Phys Conf Ser 1100: 012014. https://doi.org/10.1088/1742-6596/1100/1/012014. [CrossRef] [Google Scholar]
- Lario D, Ho GC, Decker RB, Roelof EC, Desai MI, Smith CW. 2003. ACE observations of energetic particles associated with transient interplanetary shocks. AIP Conf Proc 679: 640–643. https://doi.org/10.1063/1.1618676. [CrossRef] [Google Scholar]
- Lario D, Richardson IG, Palmerio E, Lugaz N, Bale SD, et al. 2021. Comparative analysis of the 2020 November 29 solar energetic particle event observed by parker solar probe. Astrophys J 920(2): 123. https://doi.org/10.3847/1538-4357/ac157f. [CrossRef] [Google Scholar]
- Lario D, Sanahuja B, Heras AM. 1998. Energetic particle events: efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators. Astrophys J 509: 415–434. https://doi.org/10.1086/306461. [CrossRef] [Google Scholar]
- Lepping RP, Acũna MH, Burlaga LF, Farrell WM, Slavin JA, et al. 1995. The wind magnetic field investigation. Space Sci Rev 71(1–4): 207–229. https://doi.org/10.1007/BF00751330. [CrossRef] [Google Scholar]
- Li G, Jin M, Ding Z, Bruno A, de Nolfo GA, Randol BM, Mays L, Ryan J, Lario D. 2021. Modeling the 2012 May 17 solar energetic particle event using the AWSoM and iPATH models. Astrophys J 919(2): 146. https://doi.org/10.3847/1538-4357/ac0db9. [CrossRef] [Google Scholar]
- Linan L, Regnault F, Perri B, Brchnelova M, Kuzma B, Lani A, Poedts S, Schmieder B. 2023. Self-consistent propagation of flux ropes in realistic coronal simulations. A&A 675: A101. https://doi.org/10.1051/0004-6361/202346235. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ng CK, Reames DV. 1995. Pitch angle diffusion coefficient in an extended quasi-linear theory. Astrophys J 453: 890. https://doi.org/10.1086/176449. [CrossRef] [Google Scholar]
- Ng CK, Reames DV, Tylka AJ. 2012. Solar energetic particles: shock acceleration and transport through self-amplified waves. AIP Conf Proc 1436: 212–218. https://doi.org/10.1063/1.4723610. [Google Scholar]
- Ogilvie KW, Chornay DJ, Fritzenreiter RJ, Hunsaker F, Keller J, et al. 1995. SWE, A comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71(1–4): 55–77. https://doi.org/10.1007/BF00751326. [CrossRef] [Google Scholar]
- Perri B, Leitner P, Brchnelova M, Baratashvili T, Kuźma B, Zhang F, Lani A, Poedts S. 2022. COCONUT, a novel fast-converging MHD model for solar corona simulations: I. Benchmarking and optimization of polytropic solutions. Astrophys J 936(1): 19. https://doi.org/10.3847/1538-4357/ac7237, https://ui.adsabs.harvard.edu/abs/2022ApJ...936...19P. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8(27): A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Prinsloo PL, Strauss RD, le Roux JA. 2019. Acceleration of solar wind particles by traveling interplanetary shocks. Astrophys J 878(2): 144. https://doi.org/10.3847/1538-4357/ab211b. [CrossRef] [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. https://doi.org/10.1023/A:1005105831781. [CrossRef] [Google Scholar]
- Scolini C, Rodriguez L, Mierla M, Pomoell J, Poedts S. 2019. Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. A&A 626: A122. https://doi.org/10.1051/0004-6361/201935053. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Smith CW, Bieber JW, Matthaeus WH. 1990. Cosmic-ray pitch-angle scattering in isotropic turbulence. II. Sensitive dependence on the dissipation range spectrum. Astrophys J 363: 283. https://doi.org/10.1086/169340. [CrossRef] [Google Scholar]
- Vainio R. 2003. On the generation of Alfvén waves by solar energetic particles. A&A 406: 735–740. https://doi.org/10.1051/0004-6361:20030822. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the earth’s particle radiation environment. Space Sci Rev 147(3–4): 187–231. https://doi.org/10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vainio R, Laitinen T. 2007. Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence. Astrophys J 658(1): 622–630. https://doi.org/10.1086/510284. [CrossRef] [Google Scholar]
- Vainio R, Pönni A, Battarbee M, Koskinen HEJ, Afanasiev A, Laitinen T. 2014. A semi-analytical foreshock model for energetic storm particle events inside 1 AU. J Space Weather Space Clim 4: A08. https://doi.org/10.1051/swsc/2014005. [CrossRef] [EDP Sciences] [Google Scholar]
- van den Berg J, Strauss DT, Effenberger F. 2020. A primer on focused solar energetic particle transport. Space Sci Rev 216(8): 146. https://doi.org/10.1007/s11214-020-00771-x. [CrossRef] [Google Scholar]
- Whitman K, Egeland R, Richardson IG, Allison C, Quinn P, et al. 2023. Review of solar energetic particle prediction models. Adv Space Res 72(12): 5161–5242. https://doi.org/10.1016/j.asr.2022.08.006. [CrossRef] [Google Scholar]
- Wijsen N. 2020. PARADISE: a model for energetic particle transport in the solar wind. PhD thesis, Katholieke University of Leuven, Belgium. Available at https://ui.adsabs.harvard.edu/link_gateway/2020PhDT.........8W/AUTHOR_PDF. [Google Scholar]
- Wijsen N, Aran A, Pomoell J, Poedts S. 2019. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. A&A 622: A28. https://doi.org/10.1051/0004-6361/201833958. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Sanahuja B, Pomoell J, Poedts S. 2020. The effect of drifts on the decay phase of SEP events. A&A 634: A82. https://doi.org/10.1051/0004-6361/201937026. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Scolini C, Lario D, Afanasiev A, Vainio R, Sanahuja B, Pomoell J, Poedts S. 2022. Observation-based modelling of the energetic storm particle event of 14 July 2012. A&A 659: A187. https://doi.org/10.1051/0004-6361/202142698. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.