Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2025013 | |
Published online | 20 May 2025 |
- Alken P, Thébault E, Beggan CD, Amit H, Aubert J, et al. 2021. International geomagnetic reference field: the thirteenth generation. Earth Planet Space 73(1): 49. https://doi.org/10.1186/s40623-020-01288-x. [CrossRef] [Google Scholar]
- Barthélemy M, Kalegaev V, Vialatte A, Le Coarer E, Kerstel E, et al. 2018. Amical sat and atise: two space missions for auroral monitoring. J Space Weather Space Clim 8: A44. https://doi.org/10.1051/swsc/2018035. [CrossRef] [EDP Sciences] [Google Scholar]
-
Barthelemy M, Lamy H, Vialatte A, Johnsen MG, Cessateur G, Zaourar N. 2019. Measurement of the polarisation in the auroral
427.8 nm band. J Space Weather Space Clim 9: A26. https://doi.org/10.1051/swsc/2019024. [CrossRef] [EDP Sciences] [Google Scholar]
- Barthelemy M, Lilensten J, Pitout F, Simon Wedlund C, Thissen R, et al. 2011. Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments. Ann Geophys 29(6): 1101–1112. https://doi.org/10.5194/angeo-29-1101-2011. [CrossRef] [Google Scholar]
- Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch BW, Pignalberi A. 2022. The international reference ionosphere model: a review and description of an ionospheric benchmark. Rev Geophys 60(4): e2022RG000792. https://doi.org/10.1029/2022RG000792. [CrossRef] [Google Scholar]
- Bommier V, Sahal-Bréchot S, Dubau J, Cornille M. 2011. The theoretical impact polarization of the O I 6300 Å red line of Earth aurorae. Ann Geophys 29(1): 71–79. https://doi.org/10.5194/angeo-29-71-2011. [CrossRef] [Google Scholar]
- Bosse L, Lilensten J, Gillet N, Brogniez C, Pujol O, Rochat S, Delboulbé A, Curaba S, Johnsen MG. 2022a. At the source of the polarisation of auroral emissions: experiments and modeling. J Space Weather Space Clim 12: 7. https://doi.org/10.1051/swsc/2022004. [CrossRef] [EDP Sciences] [Google Scholar]
- Bosse L, Lilensten J, Gillet N, Rochat S, Delboulbé A, et al. 2020. On the nightglow polarisation for space weather exploration. J Space Weather Space Clim, 10: 35. https://doi.org/10.1051/swsc/2020036. [CrossRef] [EDP Sciences] [Google Scholar]
- Bosse L, Lilensten J, Johnsen MG, Gillet N, Rochat S, Delboulbé A, Curaba S, Ogawa Y, Derverchère P, Vauclair S. 2022b. The polarisation of auroral emissions: a tracer of the E region ionospheric currents. J Space Weather Space Clim 12: 17. https://doi.org/10.1051/swsc/2022014. [CrossRef] [EDP Sciences] [Google Scholar]
- Broadfoot AL, Hatfield DB, Anderson ER, Stone TC, Sandel BR, Gardner JA, Murad E, Knecht DJ, Pike CP, Viereck RA. 1997. N2 triplet band systems and atomic oxygen in the dayglow. J Geophys Res 102(A6): 11567–11584. https://doi.org/10.1029/97JA00771. [CrossRef] [Google Scholar]
- Cartwright DC. 1978. Vibrational populations of the excited states of N2 under auroral conditions. J Geophys Res 83(A2): 517–531. https://doi.org/10.1029/JA083iA02p00517. [CrossRef] [Google Scholar]
- Cartwright DC, Brunger MJ, Campbell L, Mojarrabi B, Teubner PJO. 2000. Nitric oxide excited under auroral conditions: Excited state densities and band emissions. J Geophys Res Space Phys 105(A9): 20857–20867. https://doi.org/10.1029/1999JA000333. [CrossRef] [Google Scholar]
- Degen V. 1982. Synthetic spectra for auroral studies: the N2 Vegard-Kaplan band system. J Geophys Res 87(12): 10541–10547. https://doi.org/10.1029/JA087iA12p10541. [CrossRef] [Google Scholar]
- Emmert JT, Drob DP, Picone JM, Siskind DE, Jones M, et al. 2021. NRLMSIS 2.0: a whole atmosphere empirical model of temperature and neutral species densities. Earth Space Sci 8(3): e01321. https://doi.org/10.1029/2020EA001321. [CrossRef] [Google Scholar]
- Frey HU, Mende SB, Meier RR, Kamaci U, Urco JM, Kamalabadi F, England SL, Immel TJ. 2023. In flight performance of the far ultraviolet instrument (FUV) on ICON. Space Sci Rev 219(3): 23. https://doi.org/10.1007/s11214-023-00969-9. [CrossRef] [Google Scholar]
- Gattinger RL, Vallance Jones A. 1974. Quantitative spectroscopy of the aurora. II – The spectrum of medium intensity aurora between 4500 and 8900 A. Can J Phys 52: 2343–2356. https://doi.org/10.1139/p74-305. [CrossRef] [Google Scholar]
- Gattinger RL, Vallance Jones A, Degenstein DA, Llewellyn EJ. 2010. Quantitative spectroscopy of the aurora. VI. The auroral spectrum from 275 to 815 nm observed by the OSIRIS spectrograph on board the Odin spacecraft. Can J Phys 88(8): 559–567. https://doi.org/10.1139/P10-037. [CrossRef] [Google Scholar]
- Gillies DM, Donovan E, Hampton D, Liang J, Connors M, Nishimura Y, Gallardo-Lacourt B, Spanswick E. 2019. First observations from the TREx spectrograph: the optical spectrum of STEVE and the Picket fence phenomena. Geophys Res Lett 46(13): 7207–7213. https://doi.org/10.1029/2019GL083272. [CrossRef] [Google Scholar]
- Gilmore FR, Laher RR, Espy PJ. 1992. Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J Phys Chem Ref Data 21(5): 1005–1107. https://doi.org/10.1063/1.555910. [CrossRef] [Google Scholar]
- Gronoff G, Lilensten J, Simon C, Barthélemy M, Leblanc F, Dutuit O. 2008. Modelling the Venusian airglow. A&A 482(3): 1015–1029. https://doi.org/10.1051/0004-6361:20077503. [CrossRef] [EDP Sciences] [Google Scholar]
- Gronoff G, Simon Wedlund C, Mertens CJ, Barthélemy M, Lillis RJ, Witasse O. 2012. Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. J Geophys Res Space Phy 117(A5): A05309. https://doi.org/10.1029/2011JA017308. [Google Scholar]
- Grubbs G, Michell R, Samara M, Hampton D, Hecht J, Solomon S, Jahn J-M. 2018. A comparative study of spectral auroral intensity predictions from multiple electron transport models. J Geophys Res Space Phys 123(1): 993–1005. https://doi.org/10.1002/2017JA025026. [CrossRef] [Google Scholar]
- Herlingshaw K, Partamies N, van Hazendonk C, Syrjäsuo M, Baddeley L, et al. 2024. Science highlights from the Kjell Henriksen Observatory on Svalbard. Arctic Sci 11, 1–25. https://doi.org/10.1139/as-2024-0009. [Google Scholar]
- Herzberg G. 1950. Molecular spectra and molecular structure. Vol. 1: Spectra of diatomic molecules, Van Nostrand, New York. [Google Scholar]
- Inokuti M. 1971. Inelastic collisions of fast charged particles with atoms and molecules – the Bethe theory revisited. Rev Mod Phys 43: 297–347. https://doi.org/10.1103/RevModPhys.43.297. [CrossRef] [Google Scholar]
- Itikawa Y. 2006. Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1): 31–53. https://doi.org/10.1063/1.1937426. [CrossRef] [Google Scholar]
- Itikawa Y, Ichimura A, Onda K, Sakimoto K, Takayanagi K, Hatano Y, Hayashi M, Nishimura H, Tsurubuchi S. 1989. Cross sections for collisions of electrons and photons with oxygen molecules. J Phys Chem Ref Data 18(1): 23–42. https://doi.org/10.1063/1.555841. [CrossRef] [Google Scholar]
- Johnston JE, Hatfield DB, Lyle Broadfoot A. 1994. Synthetic spectra for the Arizona airglow experiment. In: Optical spectroscopic techniques and instrumentation for atmospheric and space research, vol. 2266, Wang J, Hays PB (Ed.), International Society for Optics and Photonics, SPIE, pp. 480–491. https://doi.org/https://doi.org/10.1117/12.187559. [CrossRef] [Google Scholar]
-
Jokiaho O, Lanchester BS, Ivchenko N. 2009. Resonance scattering by auroral
: steady state theory and observations from svalbard. Ann Geophys 27(9): 3465–3478. https://doi.org/10.5194/angeo-27-3465-2009. [CrossRef] [Google Scholar]
-
Jokiaho O, Lanchester BS, Ivchenko N, Daniell GJ, Miller LCH, Lummerzheim D. 2008. Rotational temperature of
(0,2) ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements. Ann Geophys 26(4): 853–866. https://doi.org/10.5194/angeo-26-853-2008. [CrossRef] [Google Scholar]
- Khazanov GV, Koen MA, Burenkov SI. 1979. Numerical solution of the kinetic equation for photoelectrons in the plasmosphere with account for free and captured zones. Kosmicheskie Issledovaniia 17: 894–900. [Google Scholar]
- Kirillov AS, Belakhovsky VB, Maurchev EA, Balabin YuV, Germanenko AV, Gvozdevskiy BB. 2021. Luminescence of molecular nitrogen and molecular oxygen in the earth’s middle atmosphere during the precipitation of high-energy protons, Geomagn Aeron 61(6): 864–870. https://doi.org/10.1134/S0016793221060086. [CrossRef] [Google Scholar]
- Kramida A, Ralchenko Yu, Reader J, NIST ASD Team. 2022. NIST Atomic Spectra Database (ver. 5.10) [Online], National Institute of Standards and Technology, Gaithersburg, MD. Available at https://physics.nist.gov/asd (accessed October 30, 2023). [Google Scholar]
- Lanchester B, Gustavsson B. 2012. Imaging of aurora to estimate the energy and flux of electron precipitation. Geophys Monog Ser 197: 171–182. https://doi.org/10.1029/2011GM001161. [Google Scholar]
- Le Coarer EP, Richard L, Robert E, Rodrigo J, Sequies T, et al. 2021. Optimization of a compact static interferometer based on ImSPOC technology for a wide field polar lights monitoring. In: International Conference on Space Optics – ICSO 2020, , vol. 11852, Cugny B, Sodnik Z, Karafolas N (Ed.), International Society for Optics and Photonics, SPIE, p. 118521G. https://doi.org/10.1117/12.2599241. [Google Scholar]
- Lilensten J, Blelly PL. 2002. The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J Atmos Sol Terr Phys 64(7): 775–793. https://doi.org/10.1016/S1364-6826(02)00079-2. [CrossRef] [Google Scholar]
- Lilensten J, Moen J, Barthélemy M, Thissen R, Simon C, Lorentzen DA, Dutuit O, Amblard PO, Sigernes F. 2008. Polarization in aurorae: a new dimension for space environments studies. Geophys Res Lett 35(8): L08804. https://doi.org/10.1029/2007GL033006. [CrossRef] [Google Scholar]
- Lofthus A, Krupenie PH. 1977. The spectrum of molecular nitrogen. J Phys Chem Ref Data 6(1): 113–307. https://doi.org/10.1063/1.555546. [CrossRef] [Google Scholar]
- Lummerzheim D, Lilensten J. 1994. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann Geophys 12(10–11): 1039–1051. https://doi.org/10.1007/s00585-994-1039-7. [CrossRef] [Google Scholar]
- Lummerzheim D, Rees MH, Romick GJ. 1990. The application of spectroscopic studies of the aurora to thermospheric neutral composition. Planet Space Sci 38(1): 67–78. https://doi.org/10.1016/0032-0633(90)90006-C. [CrossRef] [Google Scholar]
- Mangina RS, Ajello JM, West RA, Dziczek D. 2011. High-resolution electron-impact emission spectra and vibrational emission cross sections from 330–1100 nm for N2 . Astrophys J Suppl 196(1): 13. https://doi.org/10.1088/0067-0049/196/1/13. [CrossRef] [Google Scholar]
- Marchaudon A, Blelly PL. 2020. Impact of the dipole tilt angle on the ionospheric plasma as modeled with IPIM. J Geophys Res Space Phys 125(6): e27672. https://doi.org/10.1029/2019JA027672. [CrossRef] [Google Scholar]
- Oyama SI, Tsuda TT, Hosokawa K, Ogawa Y, Miyoshi Y, et al. 2018. Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm. Earth Planet Space 70(1): 166. https://doi.org/10.1186/s40623-018-0936-z. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(12): 1468. https://doi.org/10.1029/2002JA009430. [Google Scholar]
-
Piper LG, Green BD, Blumberg WAM, Wolnik SJ. 1986. Electron impact excitation of the
meinel band. J. Phys. B: At. Mol. Opt. Phys 19(20): 3327. https://doi.org/10.1088/0022-3700/19/20/015. [CrossRef] [Google Scholar]
- Rees MH, Romick GJ. 1985. Atomic nitrogen in aurora: production, chemistry, and optical emissions. J Geophys Res 90(10): 9871–9880. https://doi.org/10.1029/JA090iA10p09871. [CrossRef] [Google Scholar]
- Robert E, Barthelemy M, Cessateur G, Woelfflé A, Lamy H, Bouriat S, Johnsen MG, Brändström U, Biree L. 2023. Reconstruction of electron precipitation spectra at the top of the upper atmosphere using 427.8 nm auroral images. J Space Weather Space Clim 13: 30. https://doi.org/10.1051/swsc/2023028. [CrossRef] [EDP Sciences] [Google Scholar]
- Simon Wedlund C, Lamy H, Gustavsson B, Sergienko T, Brändström U. 2013. Estimating energy spectra of electron precipitation above auroral arcs from ground-based observations with radar and optics. J Geophys Res Space Phys 118(6): 3672–3691. https://doi.org/10.1002/jgra.50347. [CrossRef] [Google Scholar]
-
Slanger TG, Cosby PC, Huestis DL. 2003. A new O2 band system: The
transition in the terrestrial nightglow. J Geophys Res Space Phys 108(A2): 1089. https://doi.org/10.1029/2002JA009677. [Google Scholar]
- Solomon SC. 2001. Auroral particle transport using Monte Carlo and hybrid methods. J Geophys Res 106(A1): 107–116. https://doi.org/10.1029/2000JA002011. [CrossRef] [Google Scholar]
- Solomon SC. 2017. Global modeling of thermospheric airglow in the far ultraviolet. J Geophys Res Space Phys 122(7): 7834–7848. https://doi.org/10.1002/2017JA024314. [CrossRef] [Google Scholar]
- Solomon SC, Hays PB, Abreu VJ. 1988. The auroral 6300 Å emission: observations and modeling. J Geophys Res Space Phys 93(9): 9867–9882. https://doi.org/10.1029/JA093iA09p09867. [CrossRef] [Google Scholar]
- Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K. 1988.Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27(12): 2502–2509. [CrossRef] [Google Scholar]
- Tennyson J. 2019. Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectroscopy. 3rd edn, World Scientific, https://doi.org/10.1142/7574. [CrossRef] [Google Scholar]
- Terrell CA, Hansen DL, Ajello JM. 2004. The near-ultraviolet and visible emission spectrum of O2 by electron impact. J Phys B At Mol Opt Phys 37(9): 1931. https://doi.org/10.1088/0953-4075/37/9/013. [CrossRef] [Google Scholar]
- Tuttle S, Lanchester B, Gustavsson B, Whiter D, Ivchenko N, Fear R, Lester M. 2020. Horizontal electric fields from flow of auroral O+(2P) ions at sub-second temporal resolution. Ann Geophys 38(4): 845–859. https://doi.org/10.5194/angeo-38-845-2020. [CrossRef] [Google Scholar]
- Vallance Jones A, Gattinger RL. 1972. Quantitative spectroscopy of the aurora. I. The spectrum of bright aurora between 7000 and 9000 Å at 7.5 Å resolution. Can J Phys 50: 1833–1841. https://doi.org/10.1139/p72-249. [CrossRef] [Google Scholar]
- Vialatte A. 2017. Effets des entrées énergétiques sur les composés azotés dans la haute atmosphère de la Terre. PhD thesis. Thèse de doctorat dirigée par Barthelemy, Mathieu Astrophysique et milieux dilues Université Grenoble Alpes (ComUE). Available at http://www.theses.fr/2017GREAY066. [Google Scholar]
- Vialatte A, Barthélemy M, Lilensten J. 2017. Impact of energetic electron precipitation on the upper atmosphere: nitric monoxide. Open Atmos Sci J 11(1): 88–104. https://doi.org/10.2174/1874282301711010088. [CrossRef] [Google Scholar]
-
Whiter DK, Partamies N, Gustavsson B, Kauristie K. 2023. The altitude of green OI 557.7 nm and blue
427.8 nm aurora. Ann Geophys 41(1): 1–12. https://doi.org/10.5194/angeo-41-1-2023. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.