Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2025017 | |
Published online | 16 May 2025 |
- Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al. 2003. Geant4 – simulation toolkit. Nucl Instrum Methods Phys Res A 506(3): 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
- Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, et al. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci 53(1): 270–278. https://doi.org/10.1109/TNS.2006.869826. [CrossRef] [Google Scholar]
- Aminalragia-Giamini S, Papadimitriou C, Sandberg I, Tsigkanos A, Jiggens P, Evans H, Rodgers D, Daglis IA. 2018. Artificial intelligence unfolding for space radiation monitor data. J Space Weather Space Clim 8: A50. https://doi.org/10.1051/swsc/2018041. [CrossRef] [EDP Sciences] [Google Scholar]
- Boscher D, Bourdarie SA, Falguere D, Lazaro D, Bourdoux P, Baldran T, Rolland G, Lorfevre E, Ecoffet R. 2011. In flight measurements of radiation environment on board the french satellite JASON-2. IEEE Trans Nucl Sci 58(3): 916–922. https://doi.org/10.1109/TNS.2011.2106513. [CrossRef] [Google Scholar]
- Boscher D, Cayton T, Maget V, Bourdarie S, Lazaro D, Baldran T, Bourdoux P, Lorfevre E, Rolland G, Ecoffet R. 2014a. In-flight measurements of radiation environment on board the argentinean satellite SAC-D. IEEE Trans Nucl Sci 61(6): 3395–3400. https://doi.org/10.1109/TNS.2014.2365212. [CrossRef] [Google Scholar]
- Boscher D, Sicard-Piet A, Lazaro D, Cayton T, Rolland G. 2014b. A new proton model for low altitude high energy specification. IEEE Trans Nucl Sci 61: 3401–3407. https://doi.org/10.1109/TNS.2014.2365214. [CrossRef] [Google Scholar]
- Boudouridis A, Rodriguez J, Kress B, Dichter B, Onsager T. 2020. Development of a bowtie inversion technique for real-time processing of the GOES-16/-17 SEISS MPS-HI electron channels. Space Weather 18(4): e2019SW002403. https://doi.org/10.1029/2019SW002403. [CrossRef] [Google Scholar]
- Boynton RJ, Balikhin MA, Billings SA. 2015. Online NARMAX Model for electron fluxes at GEO. Ann Geophys 33(3): 405–411. https://doi.org/10.5194/angeo-33-405-2015. [CrossRef] [Google Scholar]
- Caron P, Bourdarie S, Falguère D, Lazaro D, Bourdoux P, et al. 2022. In-flight measurements of radiation environment observed by Eutelsat 7C (electric orbit raising satellite). IEEE Trans Nucl Sci 69(7): 1527–1532. https://doi.org/10.1109/TNS.2022.3158470. [CrossRef] [Google Scholar]
- Caron P, Bourdarie S, Sicard A, Carron J, Calaprice M, et al. 2024. In-flight measurements of radiation environment observed by Hotbird 13F and Hotbird 13G (electric orbit raising satellites). IEEE Trans Nucl Sci 71: 1535–1541. https://doi.org/10.1109/TNS.2024.3367730. [CrossRef] [Google Scholar]
- Caron P, Inguimbert C, Artola L, Chatry N, Sukhaseum N, Ecoffet R, Bezerra F. 2018. Physical mechanisms inducing electron single-event upset. IEEE Tran Nucl Sci 65(8): 1759–1767. https://doi.org/10.1109/TNS.2018.2819421. [CrossRef] [Google Scholar]
- Caron P, Inguimbert C, Artola L, Ecoffet R, Bezerra F. 2019. Physical mechanisms of proton-induced single-event upset in integrated memory devices. IEEE Trans Nucl Sci 66(7): 1404–1409. https://doi.org/10.1109/TNS.2019.2902758. [CrossRef] [Google Scholar]
- Higashio N, Takashima T, Shinohara I, Matsumoto H. 2018. The extremely high-energy electron experiment (XEP) onboard the arase (ERG) satellite. Earth Planet Space 70(1): 134. https://doi.org/10.1186/s40623-018-0901-x. [CrossRef] [Google Scholar]
- Katsavrias C, Aminalragia-Giamini S, Papadimitriou C, Sandberg I, Jiggens P, Daglis I, Evans H. 2021. On the interplanetary parameter schemes which drive the variability of the source/seed electron population at GEO. J Geophys Res Space Phys 126(6): e2020JA028939. https://doi.org/10.1029/2020JA028939. [CrossRef] [Google Scholar]
- Landis DA, Saikin AA, Zhelavskaya I, Drozdov AY, Aseev N, Shprits YY, Pfitzer MF, Smirnov AG. 2022. NARX neural network derivations of the outer boundary radiation belt electron flux. Space Weather 20(5): e2021SW002774. https://doi.org/10.1029/2021SW002774. [CrossRef] [Google Scholar]
- Li X. 2004. Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather 2(3): S03006. https://doi.org/10.1029/2003SW000017. [Google Scholar]
- Li X, Temerin M, Baker DN, Reeves GD, Larson D. 2001. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys Res Lett 28(9): 1887–1890. https://doi.org/10.1029/2000GL012681. [CrossRef] [Google Scholar]
- Matéo-Vélez J-C, Sicard A, Payan D, Ganushkina N, Meredith NP, Sillanpäa I. 2018. Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather 16(1): 89–106. https://doi.org/10.1002/2017SW001689. [CrossRef] [Google Scholar]
- Messenger SR, Wong F, Hoang B, Cress CD, Walters RJ, Kluever CA, Jones G. 2014. Low-thrust geostationary transfer orbit (LT2GEO) radiation environment and associated solar array degradation modeling and ground testing. IEEE Trans Nucl Sci 61(6): 3348–3355. https://doi.org/10.1109/TNS.2014.2364894. [CrossRef] [Google Scholar]
- O’Brien TP, Johnston WR, Huston SL, Roth CJ, Guild TB, Su Y-J, Quinn RA. 2018. Changes in AE9/AP9-IRENE version 1.5. IEEE Trans Nucl Sci 65(1): 462–466. https://doi.org/10.1109/TNS.2017.2771324. [CrossRef] [Google Scholar]
- Sandberg I, Aminalragia-Giamini S, Papadimitriou C, Van Gijlswijk R, Heynderickx D, Marcinkowski R, Hajdas W, Heil M, Evans H. 2022. First results and analysis from ESA next generation radiation monitor unit onboard EDRS-C. IEEE Trans Nucl Sci 69(7): 1549–1556. https://doi.org/10.1109/TNS.2022.3160108. [CrossRef] [Google Scholar]
- Sawyer DM, Vette JI. 1976. AP-8 Trapped proton environment for solar maximum and solar minimum. National Space Science Data Center (NSSDC), World Data Center A for Rockets and Satellites (WDC-A-R&S). [Google Scholar]
- Shue J-H, Song P, Russell CT, Steinberg JT, Chao JK, et al. 1998. Magnetopause location under extreme solar wind conditions. J Geophys Res Space Phys 103(A8): 17691–17700. https://doi.org/10.1029/98JA01103. [CrossRef] [Google Scholar]
- Sicard A, Boscher D, Lazaro D, Bourdarie S, Standarovski D, Ecoffet R. 2019. New model for the plasma electrons fluxes (part of GREEN model). IEEE Trans Nucl Sci 66(7): 1738–1745. https://doi.org/10.1109/TNS.2019.2923005. [CrossRef] [Google Scholar]
- Sullivan JD. 1971. Geometric factor and directional response of single and multi-element particle telescopes. Nucl Instrum Methods 95(1): 5–11. https://doi.org/10.1016/0029-554X(71)90033-4. [CrossRef] [Google Scholar]
- Van Allen JA, Frank LA. 1959. Radiation around the earth to a radial distance of 107,400 km. Nature 183(4659): 430–434. https://doi.org/10.1038/183430a0. [CrossRef] [Google Scholar]
- Vette JI. 1991. The AE-8 trapped electron model environment. National Space Science Data Center (NSSDC), World Data Center A for Rockets and Satellites (WDC-A-R&S), National Aeronautics and Space Administration, Goddard Space Flight Center. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.