Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2025014 | |
Published online | 20 May 2025 |
- Aa E, Zou S, Ridley A, Zhang S, Coster AJ, Erickson EJ, Liu S, Ren J. 2019. Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather 17: 1–14. https://doi.org/10.1029/2018SW002101. [CrossRef] [Google Scholar]
- Becker-Guedes F, Sahai Y, Fagundes PR, Espinoza ES, Pillat VG, et al. 2007. The ionospheric response in the Brazilian sector during the supergeomagnetic storm on 20 November 2003. Ann Geophys 25: 863–873. https://doi.org/10.5194/angeo-25-863-2007. [CrossRef] [Google Scholar]
- Bobra MG, Couvidat S. 2015. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys J 798(2): 135. https://doi.org/10.1088/0004-637X/798/2/135. [Google Scholar]
- Borries C, Ferreira AA, Nykiel G, Borges RA. 2023. A new index for statistical analyses and prediction of traveling ionospheric disturbances. J Atmos Sol-Terr Phys 247(106069): 1–13. https://doi.org/10.1016/j.jastp.2023.106069. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Kauristie K, Amm O, Mielich J, Kouba D. 2017. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. J Geophys Res Space Phys 122(1): 1199–1211. https://doi.org/10.1002/2016JA023050. [CrossRef] [Google Scholar]
- Borries C, Jakowski N, Wilken V. 2009. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophys 27: 1605–1612. https://doi.org/10.5194/angeo-27-1605-2009. [CrossRef] [Google Scholar]
- Bukowski A, Ridley A, Huba JD, Valladares C, Anderson PC. 2024. Investigation of large scale traveling atmospheric/ionospheric disturbances using the Coupled SAMI3 and GITM Models. Geophys Res Lett 51(e2023GL106015): 1–10. https://doi.org/10.1029/2023GL106015. [CrossRef] [Google Scholar]
- Buonsanto MJ. 1999. Ionospheric Storms – a review. Space Sci Rev 88: 563–601. https://doi.org/10.1023/A:1005107532631. [CrossRef] [Google Scholar]
- Camporeale E. 2019. The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8): 1166–1207. https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- Cherniak I, Zakharenkova I. 2018. Large-scale traveling ionospheric disturbances origin and propagation: case Study of the December 2015 geomagnetic storm. Space Weather 16(9): 1377–1395. https://doi.org/10.1029/2018SW001869. [CrossRef] [Google Scholar]
- Codrescu MV, Codrescu SM, Fedrizzi M. 2022. Storm time neutral density assimilation in the thermosphere ionosphere with TIDA. J Space Weather Space Clim 12(13): 1–13. https://doi.org/10.1051/swsc/2022011. [CrossRef] [EDP Sciences] [Google Scholar]
- Crowley G, Hackert CL, Meier RR, Strickland DJ, Paxton LJ, et al. 2006. Global thermosphere-ionosphere response to onset of 20 November 2003 magnetic storm. J Geophys Res 111(A10S18): 1–9. https://doi.org/10.1029/2005JA011518. [Google Scholar]
- Detman T, Joselyn J. 1999. Real-time Kp predictions from ACE real time solar wind. AIP Conf Proc 471(1): 729–732. https://doi.org/10.1063/1.58720. [CrossRef] [Google Scholar]
- Devos A, Verbeeck C, Robbrecht E. 2014. Verification of space weather forecasting at the Regional Warning Center in Belgium. J Space Weather Space Clim 4(A29): 1–15. https://doi.org/10.1051/swsc/2014025. [CrossRef] [EDP Sciences] [Google Scholar]
- Fedorenko YP, Tyrnov OF, Fedorenko VN, Dorohov VL. 2013. Model of traveling ionospheric disturbances. J Space Weather Space Clim 3(A30): 1–28. https://doi.org/10.1051/swsc/2013052. [Google Scholar]
- Ferreira AA, Borges RA. 2021. Performance analysis of distinct feed-forward neural networks structures on the AE index prediction. In: Proceedings of the IEEE Aerospace Conference 2021. IEEE, pp. 1–7. https://doi.org/10.1109/AERO50100.2021.9438504. [Google Scholar]
- Francis SH. 1975. Global propagation of atmospheric gravity waves: A review. J Atmos Terr Phys 37: 1011–1054. https://doi.org/10.1016/0021-9169(75)90012-4. [CrossRef] [Google Scholar]
- Fuller-Rowell TJ, Codrescu M. 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101(A2): 2343–2353. https://doi.org/10.1029/93JA02015. [CrossRef] [Google Scholar]
- Haykin S. 2009. Neural networks and learning machines, 3rd edn. Pearson, New Jersey, USA. [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements:Spatial and temporal analysis. J Geophys Res 111(A07S11): 1–13. https://doi.org/10.1029/2005JA011474. [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Canadian J Phys 38: 1441–1481. https://doi.org/10.1139/p60-150. https://cdnsciencepub.com/doi/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hoque MM, Jakowski N. 2012. Ionospheric propagation effects on GNSS signals and new correction approaches (chap. 16.). In: Global Navigation Satellite Systems, Jin S (Ed.), IntechOpen, Rijeka. https://doi.org/10.5772/30090. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20(2): 239–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Jonah OF, Zhang S, Coster AJ, Goncharenko LP, Erickson PJ, Rideout W, de Paula ER, de Jesus R. 2020. Understanding inter-hemispheric traveling ionospheric disturbances and their mechanisms. Rem Sens 12(228): 1–25. https://doi.org/doi.org/10.3390/rs12020228. [CrossRef] [Google Scholar]
- Kim J, Kwak Y, YongHa K, Su-In M, Se-Heon J, Yun J. 2021. Potential of regional ionosphere prediction using a long short-term memory deep learning algorithm specialized for geomagnetic storm period. Space Weather 19: 1–20. https://doi.org/10.1029/2021SW002741. [Google Scholar]
- Kubota M, Shiokawa T, Ejiri MK, Otsuka Y, Ogawa T, Sakanoi T, Fukunishi H, Yamamoto M, Fukao S, Saito A. 2000. Traveling ionospheric disturbances obserived in the OI 630-nm nighthlow images over Japan by using a multi-point imager network during the FRONT campaing. Geophys Res Lett 27(24): 4037–4040. https://doi.org/10.1029/2000GL011858. [CrossRef] [Google Scholar]
- Maruyama T, Ma G, Nakamura M. 2004. Signature of TEC storm on 6 November 2001 derived from dense GPS receiver network and ionosonde chain over Japan. J Geophys Res 109(A10302): 1–11. https://doi.org/10.1029/2004JA010451. [Google Scholar]
- Mayr HG, Harris IH, Herrero FA, Spencer NW, Varosi F, Pesnell WD. 1990. Thermospheric gravity waves: obserivations and interpretation using the Tranfer Function Model (TFM). Space Sci Rev 54: 297–375. https://doi.org/10.1007/BF00177800. [Google Scholar]
- Meier RR, Crowley G, Strickland DJ, Christensen AB, Paxton LJ, Morrison D, Hackert CL. 2005. First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model. J Geophys Res 110(A09S41): 1–15. https://doi.org/10.1029/2004JA010990. [Google Scholar]
- Mendillo M. 2006. Storms in the ionosphere: Patterns and processes for total electron content. Rev Geophys 44(4): 1–47. https://doi.org/10.1029/2005RG000193. [CrossRef] [Google Scholar]
- Millward G, Quegan S, Moffett R, Fuller-Rowell T, Rees D. 1993. A modelling study of the coupled ionospheric and thermospheric response to an enhanced high-latitude electric field event. Planet Space Sci 41(1): 45–56. https://doi.org/10.1016/0032-0633(93)90016-U. [CrossRef] [Google Scholar]
- Morgan MG, Calderón CHJ, Ballard KA. 1978. Techniques for the study of TIDs with multi-station rapid-run ionosondes. Radio Sci 13(4): 729–741. https://doi.org/10.1029/RS013i004p00729. [CrossRef] [Google Scholar]
- Munro GH. 1948. Short-period changes in the F region of the ionosphere. Nature 162: 886–887. https://doi.org/10.1038/162886a0. [CrossRef] [Google Scholar]
- Murray SA. 2018. The Importance of ensemble techniques for operational space weather forecasting. Space Weather 16(7): 777–783. https://doi.org/10.1029/2018SW001861. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res Space Phys 112(A1): 1–16. https://doi.org/10.1029/2006JA012015. [Google Scholar]
- Orus-Perez R. 2018. Using TensorFlow-based Neural Network to estimate GNSS single frequency ionospheric delay (IONONet). Adv Space Res 63: 1607–1618. https://doi.org/10.1016/j.asr.2018.11.011. [Google Scholar]
- Otsuka Y, Shiokawa K, Ogawa T. 2004. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys Res Lett 31(L15803): 1–5. https://doi.org/10.1029/2004GL020262. [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31: 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Paulescu M, Paulescu E, Badescu V. 2021. Chapter 9 – Nowcasting solar irradiance for effective solar power plants operation and smart grid management. In: Predictive Modelling for Energy Management and Power Systems Engineering, Deo R, Samui P, Roy SS (Eds.), Elsevier, pp. 249–270. https://doi.org/10.1016/B978-0-12-817772-3.00009-4. [CrossRef] [Google Scholar]
- Prölss GW. 1980. Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satelliute-Borne Gas Analyzers. Rev Geophys Space Phys 18(1): 183–202. https://doi.org/10.1029/RG018i001p00183. [CrossRef] [Google Scholar]
- Reikard G. 2018. Forecasting space weather over short horizons: Revised and updated estimates. New Astron 62: 62–69. https://doi.org/10.1016/j.newast.2018.01.009. [CrossRef] [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53: 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Ridley AJ, Deng Y, Tóth G. 2006. The global ionosphere-thermosphere model. J Atmos Sol-Terr Phys 68: 839–864. https://doi.org/10.1016/j.jastp.2006.01.008. [CrossRef] [Google Scholar]
- Saito A, Fukao S, Miyazaki S. 1998. High resolution mapping of TEC perturbations with the GSI GPS Network over Japan. Geophys Res Lett 25(16): 3079–3082. https://doi.org/10.1029/98GL52361. [CrossRef] [Google Scholar]
- Sheng C, Deng Y, Zhang S, Nishimura Y, Lyons LR. 2020. Relative contributions of ion convection and particle precipitation to exciting large‐scale traveling atmospheric and ionospheric disturbances. J Geophys Res Space Phys 125: 1–11. https://doi.org/10.1029/2019JA027342. [CrossRef] [Google Scholar]
- Tsugawa T, Saito A. 2004. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophys Res 109(A06302): 1–11. https://doi.org/10.1029/2003JA010302. [Google Scholar]
- Vadas SL, Figueiredo C, Becker E, Huba JD, Themens DR, Hindley NP, Mrak S, Galkin I, Bossert K. 2023. Traveling ionospheric disturbances induced by the secondary gravity waves from the Tonga Eruption on 15 January 2022: Modeling with MESORAC-HIAMCM-SAMI3 and comparison with GPS/TEC and ionosonde data. J Geophys Res Space Phys 128(6): 1–33. https://doi.org/10.1029/2023JA031408. [Google Scholar]
- WDC. 2022. Version definitions of AE and Dst geomagnetic indices. Technical Report. WDC for Geomagnetism, Kyoto. Available at https://wdc.kugi.kyoto-u.ac.jp/wdc/pdf/AEDst_version_def_v2.pdf. [Google Scholar]
- Wrench D, Parashar TN, Singh RK, Frean M, Rayudu R. 2022. Exploring the potential of neural networks to predict statistics of solar wind turbulence. Space Weather 20(9): 1–16. https://doi.org/10.1029/2022SW003200. [CrossRef] [Google Scholar]
- Yokoyama T. 2014. Hemisphere-coupled modeling of nighttime medium-scaletraveling ionospheric disturbances. Adv Space Res 54: 481–488. https://doi.org/10.1016/j.asr.2013.07.048. [CrossRef] [Google Scholar]
- Zakharenkova I, Astafyeva E, Cherniak I. 2016. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J Geophys Res Space Phys 121(12): 12138–12156. https://doi.org/10.1002/2016JA023332. [CrossRef] [Google Scholar]
- Zhang J, Richardson G, Webb DF, Gopalswamy N, Huttunen E, et al. 2007. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005. J Geophys Res 112(A10): 1–19. https://doi.org/10.1029/2007JA012321. [Google Scholar]
- Zhou Z. 2012. Ensemble methods: Foundations and algorithms. 1st edn. Chapman & Hall/CRC Machine Learning & Pattern Recognition Series, Boca Raton, Florida. https://doi.org/10.1201/b12207. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.