Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2025018 | |
Published online | 04 June 2025 |
- Aa, E, Zhang S, Liu G, Eastes RW, Wang W, Karan DK, Qian L, Coster AJ, Erickson PJ, Derghazarian S. 2023. Statistical analysis of equatorial plasma bubbles climatology and multi‐day periodicity using GOLD observations, Geophys Res Lett 50 (8): e2023GL103510. https://doi.org/10.1029/2023GL103510. [CrossRef] [Google Scholar]
- Aa, E, Zou S, Eastes R, Karan DK, Zhang S, Erickson PJ, Coster AJ. 2020. Coordinated ground‐based and space‐based observations of equatorial plasma bubbles. J Geophys Res Space Phys 125 (1): e2019JA027569.https://doi.org/10.1029/2019JA027569. [CrossRef] [Google Scholar]
- Aarons, J. 1977. Equatorial scintillations: A review. IEEE Trans Antenna Propag 25 (5): 729–736. https://doi.org/10.1109/TAP.1977.1141649. [CrossRef] [Google Scholar]
- Aarons, J. 1982. Global morphology of ionospheric scintillations. Proc IEEE 70 (4): 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Aarons, J. 1993. The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci Rev 63 (3–4): 209–243. https://doi.org/10.1007/BF00750769. [CrossRef] [Google Scholar]
- Aarons, J, Whitney HE, MacKenzie E, Basu S. 1981. Microwave equatorial scintillation intensity during solar maximum. Radio Sci 16 (5): 939–945. https://doi.org/10.1029/RS016i005p00939. [CrossRef] [Google Scholar]
- Abdu, MA, MacDougall JW, Batista IS, Sobral JHA, Jayachandran PT. 2003. Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling. J Geophys Res Space Phys 108 (A6): 2002JA009285. https://doi.org/10.1029/2002JA009285. [CrossRef] [Google Scholar]
- Ahmed, IF, Alheyf M, Yamany MS. 2024. PlanetiQ radio occultation: Preliminary Comparative Analysis of Neutral Profiles vs. COSMIC and NWP Models. Appl Sci 14 (10): 4179. https://doi.org/10.3390/app14104179. [CrossRef] [Google Scholar]
- Akala, AO, Amaeshi LLN, Somoye EO, Idolor RO, Okoro E, et al. 2015. Climatology of GPS amplitude scintillations over equatorial Africa during the minimum and ascending phases of solar cycle 24. Astrophys Space Sci 357 (1): 17. https://doi.org/10.1007/s10509-015-2292-9. [CrossRef] [Google Scholar]
- Angling, MJ, Nogués-Correig O, Nguyen V, Vetra-Carvalho S, Bocquet F-X, Nordstrom K, Melville SE, Savastano G, Mohanty S, Masters D. 2021. Sensing the ionosphere with the Spire radio occultation constellation. J Space Weather Space Clim 11: 56. https://doi.org/10.1051/swsc/2021040. [CrossRef] [EDP Sciences] [Google Scholar]
- Basu, S, Aarons J, McClure JP, LaHoz C, Bushby A, Woodman RF. 1977. Preliminary comparisons of VHF radar maps of F-region irregularities with scintillations in the equatorial region. J Atmos Terr Phys 39 (9–10): 1251–1261. https://doi.org/10.1016/0021-9169(77)90034-4. [CrossRef] [Google Scholar]
- Basu, S, Groves KM, Basu Su, Sultan PJ. 2002. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J Atmos Sol-Terr Phys 64 (16): 1745–1754. https://doi.org/10.1016/S1364-6826(02)00124-4. [CrossRef] [Google Scholar]
- Basu, S, MacKenzie E, Basu S. 1988. Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci 23 (3): 363–378. https://doi.org/10.1029/RS023i003p00363. [CrossRef] [Google Scholar]
- Beyerle, G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C. 2005. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32 (13): L13806. https://doi.org/10.1029/2005GL023109. [CrossRef] [Google Scholar]
- Bhowmik, P, Nandy D. 2018. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Commun 9 (1): 5209. https://doi.org/10.1038/s41467-018-07690-0. [CrossRef] [Google Scholar]
- Brahmanandam, PS, Uma G, Liu JY, Chu YH, Latha Devi NSMP, Kakinami Y. 2012. Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year: GLOBAL S4 INDEX MAPS. J Geophys Res Space Phys 117 (A9). https://doi.org/10.1029/2012JA017966. [CrossRef] [Google Scholar]
- Carrano, CS, Groves KM, Rino CL, McNeil W. 2017, January. 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). Boulder, CO, USA, pp. 1–2. https://doi.org/10.1109/USNC-URSI-NRSM.2017.7878318. [Google Scholar]
- Carter, BA, Zhang K, Norman R, Kumar VV, Kumar S. 2013. On the occurrence of equatorial F‐region irregularities during solar minimum using radio occultation measurements. J Geophys Res Space Phys 118 (2): 892–904. https://doi.org/10.1002/jgra.50089. [CrossRef] [Google Scholar]
- CDAAC. 2023. UCAR: conPhs File Format. https://cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=conPhs. [Google Scholar]
- Chang, H, Lee J, Yoon H, Morton YJ, Saltman A. 2022. Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data. Earth Planet Space 74 (1): 108. https://doi.org/10.1186/s40623-022-01667-6. [CrossRef] [Google Scholar]
- Chang, H, Morton YJ, Dittmann T, Hunt D, Durgonics T, Braun J, Weiss J. 2025. Assessment of scintillation data from PlanetiQ and spire global radio occultation missions. J Geophys Res Space Phys 130 (3): e2024JA033543. https://doi.org/10.1029/2024JA033543. [CrossRef] [Google Scholar]
- Chen, S, Lin C(CH), Rajesh PK, Liu J, Eastes R, Chou M, Choi J. 2021. Near real‐time global plasma irregularity monitoring by FORMOSAT‐7/COSMIC‐2. J Geophys Res Space Phys 126 (1): e2020JA028339. https://doi.org/10.1029/2020JA028339. [CrossRef] [Google Scholar]
- Choi, J-M, Lin CC-H, Panthalingal Krishanunni R, Park J, Kwak Y-S, Chen S-P, Lin J-T, Chang M-T. 2023. Comparisons of in situ ionospheric density using ion velocity meters onboard FORMOSAT-7/COSMIC-2 and ICON missions. Earth, Planet Space 75 (1): 15. https://doi.org/10.1186/s40623-022-01759-3. [CrossRef] [Google Scholar]
- Correia, E, Tadeu de Assis Honorato Muella M, Alfonsi L, dos Santos Prol F, de Oliveira Camargo P. 2019. GPS Scintillations and Total Electron Content Climatology in the Southern American Sector. In: Accuracy of GNSS Methods , Ugur Sanli D (Ed.), IntechOpen Ltd, London, UK, pp. 47–70. https://doi.org/10.5772/intechopen.79218. [Google Scholar]
- DasGupta, A, Maitra A, Basu S. 1981. Occurrence of nighttime VHF scintillations near the equatorial anomaly crest in the Indian sector. Radio Sci. 16 (6): 1455–1458. https://doi.org/10.1029/RS016i006p01455. [CrossRef] [Google Scholar]
- Dymond, KF. 2012. Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci 47 (4): 2011RS004931. https://doi.org/10.1029/2011RS004931. [CrossRef] [Google Scholar]
- Eastes, RW, McClintock WE, Burns AG, Anderson DN, Andersson L, et al. 2017. The Global-Scale Observations of the Limb and Disk (GOLD) mission. Space Sci Rev 212 (1–2): 383–408. https://doi.org/10.1007/s11214-017-0392-2. [CrossRef] [Google Scholar]
- Eastes, RW, Solomon SC, Daniell RE, Anderson DN, Burns AG, England SL, Martinis CR, McClintock WE. 2019. Global‐scale observations of the equatorial ionization anomaly. Geophys Res Lett 46 (16): 9318–9326. https://doi.org/10.1029/2019GL084199. [CrossRef] [Google Scholar]
- Farley, DT, Balsey BB, Woodman RF, McClure JP. 1970. Equatorial spread F: Implications of VHF radar observations. J Geophys Res 75 (34): 7199–7216. https://doi.org/10.1029/JA075i034p07199. [CrossRef] [Google Scholar]
- Finlay, CC, Kloss C, Olsen N, Hammer MD, Tøffner-Clausen L, Grayver A, Kuvshinov A. 2020. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planet Space 72 (1): 156. https://doi.org/10.1186/s40623-020-01252-9. [CrossRef] [Google Scholar]
- Forsythe, VV, Duly T, Hampton D, Nguyen V. 2020. Validation of ionospheric electron density measurements derived from spire CubeSat Constellation. Radio Sci 55 (1): e2019RS006953. https://doi.org/10.1029/2019RS006953, [CrossRef] [Google Scholar]
- GOLD Release Notes. 2022. GOLD Public Science Data Products Guide. https://gold.cs.ucf.edu/data/documentation/. [Google Scholar]
- Hajj, GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, e Juarez M, Yunck TP. 2004. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res Atmos 109 (D6): D06109. https://doi.org/10.1029/2003JD003909. [CrossRef] [Google Scholar]
- Hajj, GA, Ibañez-Meier R, Kursinski ER, Romans LJ. 1994. Imaging the ionosphere with the global positioning system. Int J Imaging Syst Technol 5 (2): 174–187. https://doi.org/10.1002/ima.1850050214. [CrossRef] [Google Scholar]
- Hajj, GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS. 2002. A technical description of atmospheric sounding by GPS occultation. J Atmos Sol-Terr Phys 64 (4): 451–469. https://doi.org/10.1016/S1364-6826(01)00114-6. [CrossRef] [Google Scholar]
- Hajj, GA, Romans LJ. 1998. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci 33 (1): 175–190. https://doi.org/10.1029/97RS03183. [CrossRef] [Google Scholar]
- Heelis, RA, Stoneback RA, Perdue MD, Depew MD, Morgan WA, Mankey MW, Lippincott CR, Harmon LL, Holt BJ. 2017. Ion velocity measurements for the ionospheric connections explorer. Space Sci Rev 212 (1–2): 615–629. https://doi.org/10.1007/s11214-017-0383-3. [CrossRef] [Google Scholar]
- Hernández-Pajares, M, Juan JM, Sanz J. 2000. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27 (16): 2473–2476. https://doi.org/10.1029/2000GL000032. [CrossRef] [Google Scholar]
- Hocke, K, Liu H, Pedatella N, Ma G. 2019. Global sounding of F region irregularities by COSMIC during a geomagnetic storm. Ann Geophys 37 (2): 235–242. https://doi.org/10.5194/angeo-37-235-2019. [CrossRef] [Google Scholar]
- Høeg, P, Hauchecorne A, Kirchengast G, Syndergaard S, Belloul B, Leitnger R, Rothleitner W. 1995. Derivation of atmospheric properties using a radio occultation technique. (DMI Scientific Report Nos. 95–4) DMI, pp. 1–205. [Google Scholar]
- Hoque, MM, Jakowski N. 2012. Ionospheric propagation effects on GNSS signals and new correction approaches. In: Global Navigation Satellite Systems: Signal, Theory and Applications, S, Jin (Ed.), InTech. https://doi.org/10.5772/30090. [Google Scholar]
- Huba, JD, Liu H‐L. 2020. Global Modeling of Equatorial Spread F with SAMI3/WACCM‐X. Geophys Res Lett 47 (14): e2020GL088258. https://doi.org/10.1029/2020GL088258. [CrossRef] [Google Scholar]
- Immel, TJ, England SL, Mende SB, Heelis RA, Englert CR, et al. 2018. The ionospheric connection explorer mission: Mission goals and design. Space Sci Rev 214 (1): 13. https://doi.org/10.1007/s11214-017-0449-2. [CrossRef] [Google Scholar]
- Jakowski, N, Wehrenpfennig A, Heise S, Reigber Ch, Lühr H, Grunwaldt L, Meehan TK. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29 (10): 95-1–95-4. https://doi.org/10.1029/2001GL014364. [CrossRef] [Google Scholar]
- Karan, DK, Daniell RE, England SL, Martinis CR, Eastes RW, Burns AG, McClintock WE. 2020. First Zonal Drift Velocity Measurement of Equatorial Plasma Bubbles (EPBs) From a Geostationary Orbit Using GOLD Data. J Geosphys Res Space Phys 125 (9). https://doi.org/10.1029/2020JA028173. [Google Scholar]
- Kepkar, A, Arras C, Wickert J, Schuh H, Alizadeh M, Tsai L-C. 2020. Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3∕COSMIC GPS radio occultation data. Ann Geophys 38 (3): 611–623. https://doi.org/10.5194/angeo-38-611-2020. [CrossRef] [Google Scholar]
- Koster, JR. 1972. Equatorial scintillation. Planet Space Sci 20 (12): 1999–2014. https://doi.org/10.1016/0032-0633(72)90056-6. [CrossRef] [Google Scholar]
- Kursinski, ER, Hajj GA, Bertiger WI, Leroy SS, Meehan TK, et al. 1996. Initial results of radio occultation observations of Earth’s atmosphere using the Global Positioning System. Science 271 (5252): 1107–1110. https://doi.org/10.1126/science.271.5252.1107. [CrossRef] [Google Scholar]
- Larsen, GB, Syndergaard S, Høeg P, Sørensen MB. 2005. Single frequency processing of Ørsted GPS radio occultation measurements. GPS Solu 9 (2): 144–155. https://doi.org/10.1007/s10291-005-0142-x. [CrossRef] [Google Scholar]
- Laskar, FI, Eastes RW, Codrescu MV, Evans JS, Burns AG, Wang W, McClintock WE, Aryal S, Cai X. 2021a. Response of GOLD retrieved thermospheric temperatures to geomagnetic activities of varying magnitudes. Geophys Res Lett 48 (15): e2021GL093905. https://doi.org/10.1029/2021GL093905. [CrossRef] [Google Scholar]
- Laskar, FI, Pedatella NM, Codrescu MV, Eastes RW, Evans JS, Burns AG, McClintock W. 2021b. Impact of GOLD retrieved thermospheric temperatures on a whole atmosphere data assimilation model. J Geophys Res Space Phys 126 (1): e2020JA028646. https://doi.org/10.1029/2020JA028646. [CrossRef] [Google Scholar]
- Liu, L, Morton YJ. 2023. Assessment of storm-time ionospheric electron density measurements from Spire Global CubeSat GNSS radio occultation constellation. GPS Solu 27 (2): 75. https://doi.org/10.1007/s10291-023-01414-8. [CrossRef] [Google Scholar]
- Loutfi, A, Pitout F, Bounhir A, Benkhaldoun Z, Makela JJ, Abamni S, Zyane K, Elfakhiri A. 2022. Interhemispheric asymmetry of the Equatorial Ionization Anomaly (EIA) on the african sector over 3 years (2014–2016): effects of thermospheric meridional winds. J Geophys Res Space Phys 127 (9): e2021JA029902. https://doi.org/10.1029/2021JA029902. [CrossRef] [Google Scholar]
- Macho, EP, Correia E, Spogli L, Tadeu de Assis Honorato Muella M. 2022. Climatology of ionospheric amplitude scintillation on GNSS signals at south American sector during solar cycle 24. J Atmos Sol-Terr Phys 231: 105872. https://doi.org/10.1016/j.jastp.2022.105872. [CrossRef] [Google Scholar]
- Martinis, C, Daniell R, Eastes R, Norrell J, Smith J, Klenzing J, Solomon S, Burns A. 2021. Longitudinal variation of postsunset plasma depletions from the Global‐Scale Observations of the Limb and Disk (GOLD) mission. J Geophys Res Space Phys 126 (2): e2020JA028510. https://doi.org/10.1029/2020JA028510. [CrossRef] [Google Scholar]
- McCaffrey, A, Jayachandran PT. 2022. Comments on “Stochastic TEC structure characterization” by Charles Rino, Yu Morton, Brian Breitsch, and Charles Carrano. J Geophys Res Space Phys 124. https://doi.org/10.1029/2019JA026958; Journal of Geophysical Research: Space Physics, 127(1), e2021JA029423. https://doi.org/10.1029/2021JA029423. [Google Scholar]
- Muella, MTAH, Duarte-Silva MH, Moraes AO, de Paula ER, de Rezende LFC, Alfonsi L, Affonso BJ. 2017. Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region. Ann Geophys 35 (6): 1201–1218. https://doi.org/10.5194/angeo-35-1201-2017. [CrossRef] [Google Scholar]
- Nguyen, V. 2024, April. Personal Communication [Personal communication]. [Google Scholar]
- Olwendo, OJ, Cilliers PJ. 2023.. Simultaneous observation on the post-sunset occurrence of travelling ionospheric disturbance alongside ionospheric irregularities over the East Africa low latitude region. Adv Space Res 73: 2433–2456. https://doi.org/10.1016/j.asr.2023.12.005. [Google Scholar]
- Osei-Poku, L, Tang L, Chen W, Mingli C. 2021. Evaluating Total Electron Content (TEC) detrending techniques in determining ionospheric disturbances during lightning events in a low latitude region. Remote Sens 13 (23): 4753. https://doi.org/10.3390/rs13234753. [CrossRef] [Google Scholar]
- Pakhotin, IP, Mann IR, Xie K, Burchill JK, Knudsen DJ. 2021. Northern preference for terrestrial electromagnetic energy input from space weather. Nature Commun 12 (1): 199. https://doi.org/10.1038/s41467-020-20450-3. [CrossRef] [Google Scholar]
- Park, J, Heelis R, Chao CK. 2021. Ion velocity and temperature variation around topside nighttime irregularities: Contrast between low‐ and mid‐latitude regions. J Geophys Res Space Phys 126 (2): e2020JA028810. https://doi.org/10.1029/2020JA028810. [Google Scholar]
- Park, J, Min KW, Eastes RW, Chao CK, Kim H-E, et al. 2022. Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements. Adv Space Res 72 (3): 726–740. S0273117722003994. https://doi.org/10.1016/j.asr.2022.05.021. [Google Scholar]
- Pedatella, NM, Yue X, Schreiner WS. 2015. An improved inversion for FORMOSAT‐3/COSMIC ionosphere electron density profiles. J Geophys Res Space Phys 120 (10): 8942–8953. https://doi.org/10.1002/2015JA021704. [CrossRef] [Google Scholar]
- Penza, V, Bertello L, Cantoresi M, Criscuoli S, Berrilli F. 2023. Prediction of solar cycle 25: Applications and comparison. Rendiconti Lincei. Scienze Fisiche e Naturali 34 (3): 663–670. https://doi.org/10.1007/s12210-023-01184-y. [CrossRef] [Google Scholar]
- Prol, FS, Hoque MM. 2021. Topside ionosphere and plasmasphere modelling using GNSS radio occultation and POD Data. Remote Sens 13 (8): 1559. https://doi.org/10.3390/rs13081559. [CrossRef] [Google Scholar]
- Prol, FS, Hoque MM, Hernández-Pajares M, Yuan L, Olivares-Pulido G, von Engeln A, Marquardt C, Notarpietro R. 2023. Study of ionospheric bending angle and scintillation profiles derived by GNSS radio-occultation with MetOp-A satellite. Remote Sens 15 (6): 1663. https://doi.org/10.3390/rs15061663. [CrossRef] [Google Scholar]
- Rino, C, Morton Y, Breitsch B, Carrano C. 2019. Stochastic TEC structure characterization. J Geophys Res Space Phys 124 (12): 10571–10579. https://doi.org/10.1029/2019JA026958. [CrossRef] [Google Scholar]
- Savastano, G, Nordström K, Angling MJ. 2022. Semi-supervised classification of lower-ionospheric perturbations using GNSS radio occultation observations from Spire Global’s Cubesat Constellation. J Space Weather Space Clim 12: 14. https://doi.org/10.1051/swsc/2022009. [CrossRef] [EDP Sciences] [Google Scholar]
- Schreiner, WS, Sokolovskiy SV, Rocken C, Hunt DC. 1999. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34 (4): 949–966. https://doi.org/10.1029/1999RS900034. [CrossRef] [Google Scholar]
- Shaikh, MM, Nava B, Kashcheyev A. 2017. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick. Adv Space Res 59 (1): 326–336, https://doi.org/10.1016/j.asr.2016.09.006. [CrossRef] [Google Scholar]
- Spire. 2021. Spire Level 0 Raw RO Product Description. Spire Global Inc. https://spire-earth-obs-product-documentation.s3.us-west-2.amazonaws.com/gnss-ro/spire_data_manual_gnss-ro_L0_raw.pdf. [Google Scholar]
- Spogli, L, Alfonsi L, Cesaroni C. 2023.. Stepping into an equatorial plasma bubble with a swarm overfly. Space Weather 21 (5): e2022SW003331. https://doi.org/10.1029/2022SW003331. [CrossRef] [Google Scholar]
- Stolle, C, Lühr H, Rother M, Balasis G. 2006. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111 (A2): A02304. https://doi.org/10.1029/2005JA011184. [Google Scholar]
- Straus, PR. 2020. FORMOSAT-7/COSMIC-2: TGRS Space Weather Provisional Data Release I. https://data.cosmic.ucar.edu/gnss-ro/cosmic2/provisional/spaceWeather/F7C2_SpWx_Provisional_Data_Release_1.pdf. [Google Scholar]
- Straus, PR, Anderson PC, Danaher JE. 2003. GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett 30 (8): 1436. https://doi.org/10.1029/2002GL016503. [CrossRef] [Google Scholar]
- Tsai, L-C, Su S-Y, Liu C-H. 2017. Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data. GPS Solu 21 (3): 1037–1048. https://doi.org/10.1007/s10291-016-0591-4. [CrossRef] [Google Scholar]
- Van Dierendonck, AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code recievers. In: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), pp. 1333–1342. [Google Scholar]
- Vila, P. 1971. Intertropical F2 ionization during June and July 1966. Radio Sci 6 (7): 689–697. https://doi.org/10.1029/RS006i007p00689. [CrossRef] [Google Scholar]
- Whalen, JA. 2009. The linear dependence of GHz scintillation on electron density observed in the equatorial anomaly. Ann Geophys 27 (4): 1755–1761. https://doi.org/10.5194/angeo-27-1755-2009. [CrossRef] [Google Scholar]
- Wickert, J, Reigber C, Beyerle G, König R, Marquardt C, et al. 2001. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys Res Lett 28 (17): 3263–3266. https://doi.org/10.1029/2001GL013117. [CrossRef] [Google Scholar]
- Wu, DL. 2020. Ionospheric S4 scintillations from GNSS Radio Occultation (RO) at Slant Path. Remote Sens 12 (15): 2373. https://doi.org/10.3390/rs12152373. [CrossRef] [Google Scholar]
- Wu, MJ, Yue HY, Guo P, Ma X, Li HG, Dong JJ, Zuo FF. 2024. The initial assessment of ionospheric radio occultation data of MSS‐1 satellite and its applications in scintillation exploration. Earth Space Sci 11 (9): e2024EA003695. https://doi.org/10.1029/2024EA003695. [CrossRef] [Google Scholar]
- Yue, X, Schreiner WS, Pedatella NM, Kuo Y. 2016. Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Weather 14 (4): 285–299. https://doi.org/10.1002/2015SW001340. [CrossRef] [Google Scholar]
- Zhran, M, Mousa A, Wang Y, Hasher FFB, Jin S. 2024. Assessment of commercial GNSS radio occultation performance from PlanetiQ Mission. Remote Sens 16 (17): 3339. https://doi.org/10.3390/rs16173339. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.