Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/swsc/2025016 | |
Published online | 26 May 2025 |
- Allen RC, Ho GC, Jian LK, Vines SK, Bale SD, et al. 2021. A living catalog of stream interaction regions in the parker solar probe era. A&A 650: A25. https://doi.org/10.1051/0004-6361/202039833. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bernoux G, Brunet A, Buchlin É, Janvier M, Sicard A. 2022. Forecasting the geomagnetic activity several days in advance using neural networks driven by solar EUV imaging. J Geophys Res Space Phys 127(10): e2022JA030868. https://doi.org/10.1029/2022JA030868. [CrossRef] [Google Scholar]
- Chen J, Deng H, Li S, Li W, Chen H, Chen Y, Luo B. 2022. RU-net: a residual U-net for automatic interplanetary coronal mass ejection detection, Astrophys J Suppl Ser 259 (1): 8. https://doi.org/10.3847/1538-4365/ac4587. [CrossRef] [Google Scholar]
- Chi Y, Shen C, Luo B, Wang Y, Xu M. 2018. Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16(12): 1960–1971. https://doi.org/10.1029/2018SW001894. [NASA ADS] [CrossRef] [Google Scholar]
- Chi Y, Shen C, Wang Y, Xu M, Ye P, Wang S. 2016. Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Solar Phys 291(8): 2419–2439. https://doi.org/10.1007/s11207-016-0971-5. [CrossRef] [Google Scholar]
- Dal Lago A, Gonzalez WD, Balmaceda LA, Vieira LEA, Echer E, et al. 2006 The 17–22 October (1999) solar-interplanetary-geomagnetic event: very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream. J Geophys Res Space Phys 111(A7): A07S14. https://doi.org/10.1029/2005JA011394. [CrossRef] [Google Scholar]
- dos Santos LFG, Narock A, Nieves-Chinchilla T, Nuñez M, Kirk M. 2020. Identifying flux rope signatures using a deep neural network. Solar Phys 295(10): 131. https://doi.org/10.1007/s11207-020-01697-x. [CrossRef] [Google Scholar]
- Echer E, Tsurutani BT, Gonzalez WD. 2013. Interplanetary origins of moderate (−100 nT < Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008). J Geophys Res Space Phys 118(1): 385–392. https://doi.org/10.1029/2012JA018086. [CrossRef] [Google Scholar]
- Farooki H, Abduallah Y, Noh SJ, Kim H, Bizos G, Shin Y, Wang JTL, Wang H. 2024. A machine learning approach to understanding the physical properties of magnetic flux ropes in the solar wind at 1 Au. Astrophys J 961(1): 81. https://doi.org/10.3847/1538-4357/ad0c52. [CrossRef] [Google Scholar]
- Gosling J, Pizzo V. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89(1): 21–52. https://doi.org/10.1023/A:1005291711900. [CrossRef] [Google Scholar]
- Gosling JT, Pizzo V, Bame SJ. 1973. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J Geophys Res 78(13): 2001–2009. https://doi.org/10.1029/JA078i013p02001. [CrossRef] [Google Scholar]
- Grandin M, Aikio AT, Kozlovsky A. 2019. Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. J Geophys Res Space Phys 124(6): 3871–3892. https://doi.org/10.1029/2018JA026396. [CrossRef] [Google Scholar]
- Hardt M, Recht B, Singer Y. 2016. Train faster, generalize better: stability of stochastic gradient descent. https://doi.org/10.48550/arXiv.1509.01240 [cs. LG]. [Google Scholar]
- Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proc Mach Learn Res 37: 448–456. https://doi.org/10.48550/arXiv.1502.03167. [Google Scholar]
- Jha D, Smedsrud PH, Riegler MA, Johansen D, de Lange T, Halvorsen P, et al. 2019. ResUNet++: an advanced architecture for medical image segmentation. https://doi.org/10.48550/arXiv.1911.07067 [ecs, eess]. [Google Scholar]
- Jian L, Russell CT, Luhmann JG, Skoug RM. 2006. Properties of interplanetary coronal mass ejections at one au during 1995–2004. Solar Phys 239(1–2): 393–436. https://doi.org/10.1007/s11207-006-0133-2. [CrossRef] [Google Scholar]
- Kilpua EKJ, Balogh A, von Steiger R, Liu YD. 2017. Geoeffective properties of solar transients and stream interaction regions. Space Sci Rev 212(3): 1271–1314. https://doi.org/10.1007/s11214-017-0411-3. [Google Scholar]
- Kilpua EKJ, Koskinen HEJ, Pulkkinen TI. 2017. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev Solar Phys 14(1): 5. https://doi.org/10.1007/s41116-017-0009-6. [CrossRef] [Google Scholar]
- LeCun Y, Kavukcuoglu K, Farabet C. 2010. Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June, IEEE, pp. 253–256. ISBN 978-1-4244-5308-5. https://doi.org/10.1109/ISCAS.2010.5537907. [Google Scholar]
- Lepping RP, Wu C-C, Berdichevsky DB. 2005. Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties. Ann Geophys 23(7): 2687–2704. https://doi.org/10.5194/angeo-23-2687-2005. [CrossRef] [Google Scholar]
- Li C, Li L, Jiang H, Weng K, Geng Y, et al. 2022. YOLOv6: a single stage object detection framework for industrial application. https://doi.org/10.48550/arXiv.2209.02976 [cs. CV]. [Google Scholar]
- Möstl C, Isavnin A, Boakes PD, Kilpua EKJ, Davies JA, et al. 2017. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the heliophysics system observatory. Space Weather 15(7): 955–970. https://doi.org/10.1002/2017SW001614. [CrossRef] [Google Scholar]
- Narock T, Narock A, Dos Santos LFG, Nieves-Chinchilla T. 2022. Identification of flux rope orientation via neural networks. Front Astron Space Sci 9: 838442. https://doi.org/10.3389/fspas.2022.838442. [CrossRef] [Google Scholar]
- Nguyen G, Aunai N, Fontaine D, Pennec EL, den Bossche JV, Jeandet A, Bakkali B, Vignoli L, Blancard BR-S. 2019. Automatic detection of interplanetary coronal mass ejections from in situ data: a deep learning approach. Astrophys J 874(2): 145. https://doi.org/10.3847/1538-4357/ab0d24. [CrossRef] [Google Scholar]
- Nguyen G, Bernoux G, Ferlin A. 2025a. Interplanetary solar events catalogs [Dataset]. Recherche Data Gouv. https://doi.org/10.57745/BYC2WC. [Google Scholar]
- Nguyen G, Bernoux G, Ferlin A. 2025b. Results of multi-class detection of solar events with a YOLO based approach. . Recherche Data Gouv. https://doi.org/10.57745/HDCAZ3. [Google Scholar]
- Nieves-Chinchilla T, Vourlidas A, Raymond JC, Linton MG, Al-haddad N, Savani NP, Szabo A, Hidalgo MA. 2018. Understanding the internal magnetic field configurations of icmes using more than 20 years of wind observations. Solar Phys 293(2): 25. https://doi.org/10.1007/s11207-018-1247-z. [CrossRef] [Google Scholar]
- Ojeda-Gonzalez A, Mendes O, Calzadilla A, Domingues MO, Prestes A, Klausner V. 2017. An alternative method for identifying interplanetary magnetic cloud regions. Astrophys J 837(2): 156. https://doi.org/10.3847/1538-4357/aa6034. [CrossRef] [Google Scholar]
- Pal S, dos Santos LFG, Weiss AJ, Narock T, Narock A, Nieves-Chinchilla T, Jian LK, Good SW. 2024. Automatic detection of large-scale flux ropes and their geoeffectiveness with a machine-learning approach. Astrophys J 972(1): 94. https://doi.org/10.3847/1538-4357/ad54c3. [CrossRef] [Google Scholar]
- Papitashvili NE, King JH. 2020. OMNI 1-min Data [Data set]. NASA Space Physics Data Facility. https://doi.org/10.48322/45bb-8792 (accessed on January 6, 2025). [Google Scholar]
- Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. 2019. PyTorch: an imperative style, high-performance deep learning library. https://doi.org/10.48550/arXiv.1912.01703 [cs. LG]. [Google Scholar]
- Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June, IEEE, pp. 779–788. https://doi.org/10.1109/CVPR.2016.91. [Google Scholar]
- Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 21–26 July, IEEE, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690. [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Solar Phys 264(1): 189–237. https://doi.org/10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Richardson, IG, Cane HV. 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2: A01. https://doi.org/10.1051/swsc/2012001. [Google Scholar]
- Rüdisser HT, Windisch A, Amerstorfer UV, Möstl C, Amerstorfer T, Bailey RL, Reiss MA. 2022. Automatic detection of interplanetary coronal mass ejections in solar wind in situ data. Space Weather 20(10): e2022SW003149. https://doi.org/10.1029/2022SW003149. [CrossRef] [Google Scholar]
- Snyder CW, Neugebauer M, Rao UR. 1963. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J Geophys Res 68(24): 6361–6370. https://doi.org/10.1029/JZ068i024p06361. [CrossRef] [Google Scholar]
- Terven J, Cordova-Esparza D. 2023. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.48550/arXiv.2304.00501 [cs. CV]. [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res Space Phys 111(A7): A07S01. https://doi.org/10.1029/2005JA011273. [Google Scholar]
- Zhang C, Barbano R, Jin B. 2021. Conditional variational autoencoder for learned image reconstruction. https://doi.org/10.48550/arXiv.2110.1168 [cs. CV]. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.