Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Swarm 10-Year Anniversary
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2025026 | |
Published online | 18 July 2025 |
- Aol, S, Buchert S, Jurua E, Sorriso-Valvo L. 2023. Spectral properties of sub-kilometer-scale equatorial irregularities as seen by the Swarm satellites. Adv Space Res 72 (3): 741–752. https://doi.org/10.1016/j.asr.2022.07.059. [Google Scholar]
- Bak, P, Chen K, Tang C. 1990. A forest-fire model and some thoughts on turbulence. Phys Lett A 147 (5–6): 297–300. https://doi.org/10.1016/0375-9601(90)90451-S. [Google Scholar]
- Bak, P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett 59 (4): 381. https://doi.org/10.1103/PhysRevA.38.364. [Google Scholar]
- Balasis, G, Balikhin MA, Chapman SC, Consolini G, Daglis IA, et al. 2023a. Complex systems methods characterizing nonlinear processes in the near-earth electromagnetic environment: Recent advances and open challenges. Space Sci Rev 219 (5): 38. https://doi.org/10.1007/s11214-023-00979-7. [Google Scholar]
- Balasis, G, Boutsi AZ, Papadimitriou C, Potirakis SM, Pitsis V, Daglis IA, Anastasiadis A, Giannakis O. 2023b. Investigation of dynamical complexity in Swarm-derived geomagnetic activity indices using information theory. Atmosphere 14 (5): 890. https://doi.org/10.3390/atmos14050890. [Google Scholar]
- Balasis, G, Daglis I, Kapiris P, Mandea M, Vassiliadis D, Eftaxias K. 2006. From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics. Ann Geophys 24: 3557–3567. Copernicus Publications Gottingen, Germany. https://doi.org/10.5194/angeo-24-3557-2006. [Google Scholar]
- Balasis, G, Daglis IA, Anastasiadis A, Papadimitriou C, Mandea M, Eftaxias K. 2011a. Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics. Physica A Stat Mech Appl 390 (2): 341–346. https://doi.org/10.1016/j.physa.2010.09.029. [Google Scholar]
- Balasis, G, Daglis IA, Papadimitriou C, Kalimeri M, Anastasiadis A, Eftaxias K. 2009. Investigating dynamical complexity in the magnetosphere using various entropy measures. J Geophys Res Space Phys 114 (A9). https://doi.org/10.3390/atmos14050890. [Google Scholar]
- Balasis, G, Papadimitriou C, Daglis I, Anastasiadis A, Sandberg I, Eftaxias K. 2011b. Similarities between extreme events in the solar-terrestrial system by means of nonextensivity. Nonlinear Process Geophys 18 (5): 563–572. https://doi.org/10.5194/npg-18-563-2011. [Google Scholar]
- Barabasi, A-L. 2005. The origin of bursts and heavy tails in human dynamics. Nature 435 (7039): 207–211. https://doi.org/10.1038/nature03459. [Google Scholar]
- Baro, J, Vives E. 2012. Analysis of power-law exponents by maximum-likelihood maps. Phys Rev E 85 (6): 066121. https://doi.org/10.1103/PhysRevE.85.066121. [Google Scholar]
- Batchelor, GK, Townsend AA. 1949. The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A Math Phys Sci 199 (1057): 238–255. https://doi.org/10.1098/rspa.1949.0136. [Google Scholar]
- Beggs, JM, Plenz D. 2003. Neuronal avalanches in neocortical circuits. J Neurosci 23 (35): 11167–11177. https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003. [Google Scholar]
- Bhattacharyya, A. 2022. Equatorial plasma bubbles: A review. Atmosphere 13 (10): 1637. https://doi.org/10.3390/at-mos13101637. [CrossRef] [Google Scholar]
- Bishop, G, Klobuchar J, Basu S, Clynch J, Coco D. 1990. Measurements of Trans-Ionospheric Effects Using Signals from GPS. Tech. Rep. Geophysics Lab (AFSC), Hanscom AFB, MA. https://apps.dtic.mil/sti/html/tr/ADP006316/index.html. [Google Scholar]
- Boffetta, G, Carbone V, Giuliani P, Veltri P, Vulpiani A. 1999. Power laws in solar flares: self-organized criticality or turbulence? Phys Rev Lett 83 (22): 4662. https://doi.org/10.1103/PhysRevLett.83.4662. [Google Scholar]
- Bryson, MC. 1974. Heavy-tailed distributions: properties and tests. Technometrics 16 (1): 61–68. https://doi.org/10.1080/00401706.1974.10489150. [Google Scholar]
- Burlaga, L. 1991. Intermittent turbulence in the solar wind. J Geophys Res Space Phys 96 (A4): 5847–5851. https://doi.org/10.1029/91JA00087. [Google Scholar]
- Calif, R, Schmitt FG, Huang Y, Soubdhan T. 2013. Intermittency study of high frequency global solar radiation sequences under a tropical climate. Sol Energy 98: 349–365. https://doi.org/10.1016/j.solener.2013.09.018. [Google Scholar]
- Chandrasekhar, E, Prabhudesai SS, Seemala GK, Shenvi N. 2016. Multifractal detrended fluctuation analysis of ionospheric total electron content data during solar minimum and maximum. J Atmos Sol-Terr Phys 149: 31–39. https://doi.org/10.1016/j.jastp.2016.09.007. [Google Scholar]
- Chang, T. 1999. Self-organized criticality, Multi-fractal spectra, Sporadic localized reconnections and Intermittent turbulence in the magnetotail. Phys Plasmas 6 (11): 4137–4145. https://doi.org/10.1063/1.873678. [Google Scholar]
- Chang, T, Tam SW, Wu C-C. 2004. Complexity induced anisotropic bimodal intermittent turbulence in space plasmas. Phys Plasmas 11 (4): 1287–1299. https://doi.org/10.1063/1.1667496. [Google Scholar]
- Chang, T, Wu C, Podesta J, Echim M, Lamy H, Tam S. 2010. ROMA (Rank-Ordered Multifractal Analyses) of intermittency in space plasmas-a brief tutorial review. Nonlin Processes Geophys 17 (5): 545–551. https://doi.org/10.5194/npg-17-545-2010. [Google Scholar]
- Chian, AC-L, Abalde JR, Miranda RA, Borotto FA, Hysell DL, Rempel EL, Ruffolo D. 2018. Multi-spectral optical imaging of the spatiotemporal dynamics of ionospheric intermittent turbulence. Sci Rep 8 (1): 1–15. https://doi.org/10.1038/s41598-018-28780. [Google Scholar]
- Chian, AC-L, Borotto F, Hada T, Miranda RA, Muñoz PR, Rempel EL. 2022a. Chaos, complexity, and intermittent turbulence in space plasmas. arXiv preprint arXiv:2204.06133. https://doi.org/10.48550/arXiv.2204.06133. [Google Scholar]
- Chian, AC-L, Borotto FA, Hada T, Miranda R, Muñoz P, Rempel E. 2022b. Nonlinear dynamics in space plasma turbulence: temporal stochastic chaos. Rev Mod Plasma Phys 6 (1): 1–56. https://doi.org/10.1007/s41614-022-00095-z. [Google Scholar]
- Clauset, A. 2018. Trends and fluctuations in the severity of interstate wars. Sci Adv 4 (2): eaao3580. https://doi.org/10.1126/sciadv.aao3580. [Google Scholar]
- Clauset, A, Shalizi CR, Newman ME. 2009. Power-law distributions in empirical data. SIAM Rev 51 (4): 661–703. https://doi.org/10.1126/sciadv.aao3580. [Google Scholar]
- Consolini, G, and Chang T. 2002. Complexity, magnetic field topology, criticality, and metastability in magnetotail dynamics. J Atmos Sol-Terr Phys 64 (5–6): 541–549. https://doi.org/10.1016/S1364-6826(02)00011-1. [Google Scholar]
- Consolini, G, De Michelis P, Alberti T, Coco I, Giannattasio F, Tozzi R, Carbone V. 2020. Intermittency and passive scalar nature of electron density fluctuations in the high-latitude ionosphere at Swarm Altitude. Geophy Res Lett 47 (18): e2020GL089628. https://doi.org/10.1029/2020GL089628. [Google Scholar]
- Cooke, R, Nieboer D. 2011. Heavy-tailed distributions: Data, diagnostics, and new developments. Resources for the Future Discussion Paper 9: 11–19. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1811043. [Google Scholar]
- Costa, E, Kelley M. 1977. Ionospheric scintillation calculations based on in situ irregularity spectra. Radio Sci 12 (5): 797–809. https://doi.org/10.1029/RS012i005p00797. [Google Scholar]
- De Michelis, P, Consolini G, Alberti T, Pignalberi A, Coco I, Tozzi R, Giannattasio F, Pezzopane M. 2024. Investigating Equatorial Plasma Depletions through CSES-01 Satellite Data. Atmosphere 15 (7): 868. https://doi.org/10.3390/atmos15070868. [Google Scholar]
- De Michelis, P, Consolini G, Pignalberi A, Lovati G, Pezzopane M, Tozzi R, Giannattasio F, Coco I, Marcucci MF. 2022. Ionospheric turbulence: A challenge for GPS loss of lock understanding. Space Weather 20 (7): e2022SW003129. https://doi.org/10.1029/2022SW003129. [Google Scholar]
- De Michelis, P, Consolini G, Pignalberi A, Tozzi R, Coco I, Giannattasio F, Pezzopane M, Balasis G. 2021a. Looking for a proxy of the ionospheric turbulence with Swarm data. Sci Rep 11 (1): 6183. https://doi.org/10.1038/s41598-021-84985-1. [Google Scholar]
- De Michelis, P, Consolini G, Tozzi R, Pignalberi A, Pezzopane M, Coco I, Giannattasio F, Marcucci MF. 2021b. Ionospheric turbulence and the equatorial plasma density irregularities: Scaling features and RODI. Rem Sens 13 (4): 759. https://doi.org/10.3390/rs13040759. [Google Scholar]
- De Michelis, P, Tozzi R. 2020. Multiscale analysis of the turbulent ionospheric medium. In: The Dynamical Ionosphere, Elsevier, pp. 301–312. ISBN: 978-0-12-814782-5. https://doi.org/10.1016/B978-0-12-814782-5.00019-4. [Google Scholar]
- Deluca, A, Corral JA. 2013. Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys 61: 1351–1394. https://doi.org/10.2478/s11600-013-0154-9. [Google Scholar]
- Dennis, BR. 1988. Solar flare hard X-ray observations. Sol Phys 118: 49–94. https://doi.org/10.1007/BF00148588. [Google Scholar]
- Di Mare, F, Spicher A, Clausen LBN, Miloch WJ, Moen JI. 2021. Turbulence and Intermittency in the Winter Cusp Ionosphere Studied With the ICI Sounding Rockets. J Geophys Res Space Phys 126 (8): e2021JA029150. https://doi.org/10.1029/2021JA029150. [Google Scholar]
- Dragulescu, A, Yakovenko VM. 2000. Statistical mechanics of money. Eur Phys J B Condens Matter Complex Syst 17: 723–729. https://doi.org/10.1007/s100510070114.pdf. [Google Scholar]
- Dudok de Wit, T, Krasnosel’skikh V. 1996. Non-Gaussian statistics in space plasma turbulence: fractal properties and pitfalls. Nonlin Processes Geophys 3 (4): 262–273. https://doi.org/10.5194/npg-3-262-1996. [Google Scholar]
- Dyrud, L, Krane B, Oppenheim M, Pecseli H, Trulsen J, Wernik A. 2008. Structure functions and intermittency in ionospheric plasma turbulence. Nonlin Processes Geophys 15 (6): 847–862. https://doi.org/10.5194/npg-15-847-2008. [Google Scholar]
- Eke, A, Herman P, Bassingthwaighte J, Raymond G, Percival D, Cannon M, Balla I, Ikrenyi C. 2000. Physiological time series: distinguishing fractal noises from motions. Pflugers Archiv 439: 403–415. https://doi.org/10.1007/s004249900135. [Google Scholar]
- Fæhn Follestad, A, Herlingshaw K, Ghadjari H, Knudsen DJ, McWilliams KA, Moen JI, Spicher A, Wu J, Oksavik K. 2020. Dayside field-aligned current impacts on ionospheric irregularities. Geophys Res Lett 47 (11): e2019GL086722. https://doi.org/10.1029/2019GL086722. [Google Scholar]
- Falkovich, G, Gawdzki K, Vergassola M. 2001. Particles and fields in fluid turbulence. Rev Mod Phys 73 (4): 913. https://doi.org/10.1103/RevModPhys.73.913. [Google Scholar]
- Farge, M. 1992. Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24 (1): 395–458. https://doi.org/10.1146/annurev.fl.24.010192.002143. [Google Scholar]
- Friis-Christensen, E, Luhr H, Hulot G. 2006. Swarm: A constellation to study the Earth’s magnetic field. Earth Planet Space 58, 351–358. https://doi.org/10.1016/j.asr.2006.10.008. [Google Scholar]
- Frisch, U. 1980. Fully developed turbulence and intermittency. Ann New York Acad Sci 357: 359–367. https://doi.org/10.1111/j.1749-6632.1980.tb29703.x. [Google Scholar]
- Garber, A, Hallerberg S, Kantz H. 2009. Predicting extreme avalanches in self-organized critical sandpiles. Phys Rev E 80 (2): 026124. https://doi.org/10.1103/PhysRevE.80.026124. [Google Scholar]
- Ghadjari, H. 2024. Swarm-Based study of the disturbed and quiet equatorial ionosphere. PhD Thesis, University of Calgary. https://prism.ucalgary.ca/bitstreams/b37fa952-8c14-4e2d-b094-9a1b365394ee/download. [Google Scholar]
- Ghadjari, H, Knudsen D, Skone S. 2022. Standing Alfven waves within equatorial plasma bubbles. Geophys Res Lett 49 (7): e2021GL097526. https://doi.org/10.1029/2021GL097526. [Google Scholar]
- Ghadjari, H, Knudsen D, Skone S. 2023. Probability distribution of integrated power of equatorial ionosphere plasma density fluctuations measured by the Swarm Langmuir probes. In: EGU General Assembly Conference Abstracts, EGU-8677. https://doi.org/10.5194/egusphere-egu23-8677. [Google Scholar]
- Ghaffari, R. 2022. Characterizing energetic electron precipitation and whistler-mode waves during electron injection events. Ca876061-d396-4122-b3b4-c247c439d124. http://hdl.handle.net/1880/114284. [Google Scholar]
- Ghaffari, R, Cully CM. 2020. Statistical study of whistler-mode waves during substorm injections. AGU Fall Meeting Abstracts 2020: SM009-12. [Google Scholar]
- Ghaffari, R, Cully CM, Gabrielse C. 2021. Statistical study of whistler-mode waves and expected pitch angle diffusion rates during dispersionless electron injections. Geophy Res Lett 48 (17): e2021GL094085. https://doi.org/10.1029/2021GL094085. [Google Scholar]
- Giannattasio, F, De Michelis P, Consolini G, Quattrociocchi V, Coco I, Tozzi R. 2019. Characterising the electron density fluctuations in the high-latitude ionosphere at Swarm altitude in response to the geomagnetic activity. Ann Geophys 62(4): GM453. https://doi.org/10.4401/ag-7790. [Google Scholar]
- Goldstein, ML, Morris SA, Yen GG. 2004. Problems with fitting to the power-law distribution. Eur Phys J B Condens Matter Complex Syst 41: 255–258. https://doi.org/10.1140/epjb/e2004-00316-5. [Google Scholar]
- Gomes, LF, Gomes TF, Rempel EL, Gama S. 2023. Origin of multifractality in solar wind turbulence: the role of current sheets. Mon Not R Astron Soc 519 (3): 3623–3634. https://doi.org/10.1093/mnras/stac3577. [Google Scholar]
- Hajj, MR. 1999. Intermittency of energy-containing scales in atmospheric surface layer. J Eng Mech 125 (7): 797–803. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:7(797). [Google Scholar]
- Hamza, AM, Song K, Meziane K, Thayyil JP. 2023. Two-component phase scintillation spectra in the auroral region: Observations and Model. J Geophys Res Space Phys 129 (1): e2023JA031998. https://doi.org/10.1029/2023JA031998. [Google Scholar]
- Hardstone, R, Poil S-S, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K. 2012. Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front Physiol 3: 450. https://doi.org/10.3389/fphys.2012.00450/full. [Google Scholar]
- Huang, C. 2011. Occurrence of equatorial plasma bubbles during intense magnetic storms. Int J Geophys 54 (3): 435–442. https://doi.org/10.1155/2011/401858. [Google Scholar]
- Huang, S, Zhou M, Sahraoui F, Vaivads A, Deng X, et al., 2012. Observations of turbulence within reconnection jet in the presence of guide field. Geophy Res Lett 39 (11): L11104. https://doi.org/10.1029/2012GL052210. [Google Scholar]
- Hudson, MK. 1978. Spread F bubbles: Nonlinear Rayleigh-Taylor mode in two dimensions. J Geophys Res Space Phys 83 (A7): 3189–3194. https://doi.org/10.1029/JA083iA07p03189. [Google Scholar]
- Hussain, AF. 1986. Coherent structures and turbulence. J Fluid Mech 173: 303–356. https://doi.org/10.1017/S0022112086001192. [Google Scholar]
- Ihlen, EA. 2012. Introduction to multifractal detrended fluctuation analysis in Matlab. Front Physiol 3: 141. https://doi.org/10.3389/fphys.2012.00141. [Google Scholar]
- Iliopoulos, AC, Pavlos GP, Papadimitriou E, Sfiris DS, Athanasiou M, Tsoutsouras V. 2012. Chaos, self organized criticality, intermittent turbulence and nonextensivity revealed from seismogenesis in north Aegean area. Int J Bifurc Chaos 22 (09): 1250224. https://doi.org/10.1142/S0218127412502240. [Google Scholar]
- Ivanov, PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. 1999. Multifractality in human heartbeat dynamics. Nature 399 (6735): 461–465. https://doi.org/10.1038/20924. [Google Scholar]
- Jayachandran, P, Hamza A, Hosokawa K, Mezaoui H, Shiokawa K. 2017. GPS amplitude and phase scintillation associated with polar cap auroral forms. J Atmos Sol-Terr Phys 164: 185–191. https://doi.org/10.1016/j.jastp.2017.08.030. [Google Scholar]
- Jin, Y, Moen JI, Spicher A, Oksavik K, Miloch WJ, Clausen LB, Pozoga M, Saito Y. 2019. Simultaneous rocket and scintillation observations of plasma irregularities associated with a reversed flow event in the cusp ionosphere. J Geophys Res Space Phys 124 (8): 7098–7111. https://doi.org/10.1029/2019JA026942. [Google Scholar]
- Kadanoff, LP, Nagel SR, Wu L, Zhou S-M. 1989. Scaling and universality in avalanches. Phys Rev A 39 (12): 6524. https://doi.org/10.1103/PhysRevA.39.6524. [Google Scholar]
- Kantelhardt, JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Phys A Stat Mech Appl 316 (1–4): 87–114. https://doi.org/10.1016/S0378-4371(02)01383-3. [Google Scholar]
- Kelley MC. 2009. The Earth’s ionosphere: Plasma physics and electrodynamics. Int Geophys 96: xiii–xiv. Academic Press. https://doi.org/10.1016/B978-0-12-404013-7.X5001-1. [Google Scholar]
- Kelley, MC, Haerendel G, Kappler H, Valenzuela A, Balsley B, Carter DA, Ecklund WL, Carlson C, Hausler B, Torbert R. 1976. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophy Res Lett 3 (8): 448–450. https://doi.org/10.1029/GL003i008p00448. [Google Scholar]
- Keskinen, M, Ossakow S, Basu S, Sultan P. 1998. Magnetic-flux-tube-integrated evolution of equatorial ionospheric plasma bubbles. J Geophys Res Space Phys 103 (A3): 3957–3967. https://doi.org/10.1029/97JA02192. [Google Scholar]
- Kil, H. 2015. The morphology of equatorial plasma bubbles-a review. J Astron Space Sci 32 (1): 13–19. https://doi.org/10.5140/JASS.2015.32.1.1. [Google Scholar]
- Kil, H, Heelis RA, Paxton LJ, Oh S-J. 2009. Formation of a plasma depletion shell in the equatorial ionosphere. J Geophys Res Space Phys 114 (A11): A11302. https://doi.org/10.1029/2009JA014369. [Google Scholar]
- Kintner, PM, CE Seyler. 1985. The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci Rev 41 (1–2): 91–129. https://doi.org/10.1007/BF00241347. [Google Scholar]
- Kivanç, Ö, Heelis RA. 1998. Spatial distribution of ionospheric plasma and field structures in the high-latitude F region. J Geophys Res Space Phys 103 (A4): 6955–6968. https://doi.org/10.1029/97JA03237. [Google Scholar]
- Klimas, AJ, Uritsky VM, Paczuski M. 2007. Self-organized criticality and intermittent turbulence in an MHD current sheet with a threshold instability. arXiv preprint astro-ph/0701486. https://doi.org/10.48550/arXiv.astro-ph/0701486. [Google Scholar]
- Klobuchar, JA. 1983. Ionospheric effects on Earth-space propagation. Tech. Rep. Air Force Geophysics Lab, Hanscom AFB, MA, 19850020921. [Google Scholar]
- Knudsen, D, Burchill J, Buchert S, Eriksson A, Gill R, Wahlund J-E, Ahlen L, Smith M, Moffat B. 2017. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J Geophys Res Space Phys 122 (2): 2655–2673. https://doi.org/10.1002/2016JA022571. [Google Scholar]
- Knudsen, D, Ghadjari H. 2025. Investigating the role of geomagnetic activity in loss of navigational capability in the Swarm Satellite Mission. In: EGU General Assembly 2025, Vienna, Austria. https://doi.org/10.5194/egusphere-egu25-14321. [Google Scholar]
- Kolmogorov, AN. 1991. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc Lond A Math Phys Sci 434 (1890): 9–13. https://doi.org/10.1098/rspa.1991.0075. [Google Scholar]
- Kraichnan, RH. 1994. Anomalous scaling of a randomly advected passive scalar. Phys Rev Lett 72 (7): 1016. https://doi.org/10.1103/PhysRevLett.72.1016. [Google Scholar]
- Kumar, S, Chen W, Liu Z, Ji S. 2016. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong. J Geophys Res Space Phys 121 (9): 9164–9178. https://doi.org/10.1002/2016JA022873. [Google Scholar]
- Li, R, Lei J. 2021. The determination of satellite orbital decay from POD data during geomagnetic storms. Space Weather 19 (4): e2020SW002664. https://doi.org/10.1029/2020SW002664. [Google Scholar]
- Lopez-Montes, R, Perez-Enriquez R, Araujo-Pradere EA, Cruz-Abeyro JAL. 2015. Fractal and wavelet analysis evaluation of the mid latitude ionospheric disturbances associated with major geomagnetic storms. Adv Space Res 55 (2): 586–596. https://doi.org/10.1016/j.asr.2014.10.037. [Google Scholar]
- Lovejoy, S, Schertzer D. 1991. Multifractal analysis techniques and the rain and cloud fields from 10- 3 to 10 6 m. In: Non-Linear Variability in Geophysics: Scaling and Fractals , Schertzer D, Lovejoy S (Eds.), Springer Netherlands, Dordrecht, pp.111–144. ISBN: 978-94-009-2147-4. https://doi.org/10.1007/978-94-009-2147-4_8. [Google Scholar]
- Lu, ET, Hamilton RJ. 1991. Avalanches and the distribution of solar flares. Astrophys J 380: L89–L92. https://doi.org/10.1086/186180. [Google Scholar]
- Lui, A. 2002. Multiscale phenomena in the near-Earth magnetosphere. J Atmos Sol-Terr Phys 64 (2): 125–143. https://doi.org/10.1016/S1364-6826(01)00079-7. [Google Scholar]
- Lux, T, Marchesi M. 1999. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397 (6719): 498–500. https://doi.org/10.1038/17290. [Google Scholar]
- McClure, J, Hanson W, Hoffman J. 1977. Plasma bubbles and irregularities in the equatorial ionosphere. J Geophys Res 82 (19): 2650–2656. https://doi.org/10.1029/JA082i019p02650. [Google Scholar]
- McComb, W, May M. 2018. The effect of Kolmogorov (1962) scaling on the universality of turbulence energy spectra. arXiv preprint arXiv:1812.09174. https://doi.org/10.48550/arXiv.1812.09174. [Google Scholar]
- Meecham, WC. 1964. Satellite signal fluctuation caused by ionospheric irregularity. J Geophys Res 69 (15): 3175–3185. https://doi.org/10.1029/JZ069i015p03175. [Google Scholar]
- Meziane, K, Hamza A, Jayachandran P. 2023. Turbulence Signatures in High-Latitude Ionospheric Scintillation. J Geophys Res Space Phys 128 (1): e2022JA030934. https://doi.org/10.1029/2022JA030934. [Google Scholar]
- Mohandesi, A, Knudsen DJ, Skone S, Langley RB, Yau AW. 2024. Power spectral characteristics of in-situ irregularities and topside GPS signal intensity at low latitudes using high-sample-rate Swarm Echo (e-POP) measurements. Radio Sci 59 (5): e2023RS007885. https://doi.org/10.1029/2023RS007885. [Google Scholar]
- Moraghan, A, Kim J, Yoon S-J. 2015. Power spectra of outflow-driven turbulence. Mon Not R Astron Soc 450 (1): 360–368. https://doi.org/10.1093/mnras/stv662. [Google Scholar]
- Neelakshi, J, Rosa RR, Savio S, de Meneses FC, Stephany S, Fornari G, Muralikrishna P. 2019. Spectral fluctuation analysis of ionospheric inhomogeneities over Brazilian territory Part II: EF valley region plasma instabilities. Adv Space Res 64 (8): 1592–1599. https://doi.org/10.1016/j.asr.2019.07.015. [Google Scholar]
- Neelakshi, J, Rosa RR, Savio S, Stephany S, de Meneses FC, Kherani EA, Muralikrishna P. 2022. Multifractal characteristics of the low latitude equatorial ionospheric E-F valley region irregularities. Chaos Solit Fractals 156: 111808. https://doi.org/10.1016/j.chaos.2022.111808. [Google Scholar]
- Nishioka, M, Basu S, Basu S, Valladares C, Sheehan R, Roddy P, Groves K. 2011. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008. J Geophys Res Space Phys 116 (A10): A10323. https://doi.org/10.1029/2011JA016446. [Google Scholar]
- Ott, E. 1978. Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere. J Geophys Res Space Phys 83 (A5): 2066–2070. https://doi.org/10.1029/JA083iA05p02066. [Google Scholar]
- Paczuski, M, Boettcher S. 1996. Universality in sandpiles, interface depinning, and earthquake models. Phys Rev Lett 77 (1): 111. https://doi.org/10.1103/PhysRevLett.77.111. [Google Scholar]
- Panda, D, Senapati B, Tyagi B, Kundu B. 2019. Effects of Rayleigh-Taylor instability and ionospheric plasma bubbles on the global navigation satellite System signal. J Asian Earth Sci 170: 225–233. https://doi.org/10.1016/j.jseaes.2018.11.006. [Google Scholar]
- Pavlos, G, Iliopoulos A, Zastenker G, Zelenyi L, Karakatsanis L, Riazantseva M, Xenakis M, Pavlos E. 2015. Tsallis non-extensive statistics and solar wind plasma complexity. Physica A Stat Mech Appl 422: 113–135. https://doi.org/10.1016/j.physa.2014.12.007. [Google Scholar]
- Peng, C-K, Havlin S, Stanley HE, Goldberger AL. 1995. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5 (1): 82–87. https://doi.org/10.1063/1.166141. [Google Scholar]
- Perez-Oregon, J, Angulo-Brown F, Sarlis NV. 2020. Nowcasting avalanches as earthquakes and the predictability of strong avalanches in the Olami-Feder-Christensen model. Entropy 22 (11): 1228. https://doi.org/10.3390/e22111228. [Google Scholar]
- Pezzopane, M, Pignalberi A, Coco I, Consolini G, De Michelis P, Giannattasio F, Marcucci MF, Tozzi R. 2021. Occurrence of GPS loss of lock based on a Swarm half-solar cycle dataset and its relation to the background ionosphere. Rem Sens 13 (11): 2209. https://doi.org/10.3390/rs13112209. [Google Scholar]
- Pisarenko, V, Rodkin M. 2010. Heavy-tailed distributions in disaster analysis, Vol. 30, Springer Science & Business Media, Dordrecht, The Netherlands. https://doi.org/10.1007/978-90-481-9171-0. [Google Scholar]
- Resnick, SI. 2007. Heavy-tail phenomena: probabilistic and statistical modeling, Vol. 10, Springer Science & Business Media, New York, NY . https://doi.org/10.1007/978-0-387-45024-7. [Google Scholar]
- Ricotta, C, Arianoutsou M, Diaz-Delgado R, Duguy B, Lloret F, et al. 2001. Self-organized criticality of wildfires ecologically revisited. Ecologic Model 141 (1–3): 307–311. https://doi.org/10.1016/S0304-3800(01)00272-1. [Google Scholar]
- Robert, FC. 1996. Multifractal characterizations of intermittency in nonstationary geophysical signals and fields. Curr Top Nonstation Anal: 97–158. https://doi.org/10.1142/9789812833099page=106. [Google Scholar]
- Rostoker, G. 1972. Geomagnetic indices. Rev Geophys 10 (4): 935–950. https://doi.org/10.1029/RG010i004p00935. [Google Scholar]
- Salzano, M. 2008. The analysis of extreme events – Some forecasting approaches. In: Mathematical and statistical methods in insurance and finance, Springer, Milan, Italy, pp. 199–205. https://doi.org/10.1007/978-88-470-0704-8_25. [Google Scholar]
- Scharpf, A, Schneider G, Noh A, Clauset A. 2014. Forecasting the risk of extreme massacres in Syria. Eur Rev Int Stud 1 (2): 50–68. https://d-nb.info/1078649936/34. [Google Scholar]
- Schertzer, D, Lovejoy S. 1985. The dimension and intermittency of atmospheric dynamics. In: Turbulent Shear Flows 4: Selected Papers from the Fourth International Symposium on Turbulent Shear Flows, University of Karlsruhe, Karlsruhe, FRG, September 12–14, 1983. Springer, pp. 7–33. https://doi.org/10.1007/978-3-642-69996-2_2. [Google Scholar]
- Sen, AK. 2007. Multifractality as a measure of complexity in solar flare activity. Sol Phys 241: 67–76. https://doi.org/10.1007/s11207-006-0254-7. [Google Scholar]
- Sharma, AS. 2014. Complexity in nature and data-enabled science: The Earth’s magnetosphere. AIP Conf Proc 1582: 35–45. American Institute of Physics. https://doi.org/10.1029/2008JA014035. [Google Scholar]
- Shearer, PM. 2019. Introduction to seismology. Cambridge University Press, Cambridge, United Kingdom. https://doi.org/10.1017/9781316877111. [Google Scholar]
- Shimizu, Y, Thurner S, Ehrenberger K. 2002. Multifractal spectra as a measure of complexity in human posture. Fractals 10 (01): 103–116. https://doi.org/10.1142/S0218348X02001130. [Google Scholar]
- Shkarofsky, I. 1968. Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can J Phys 46 (19): 2133–2153. https://doi.org/10.1139/p68-562. [CrossRef] [Google Scholar]
- Shraiman, BI, Siggia ED. 2000. Scalar turbulence. Nature 405 (6787): 639–646. https://doi.org/10.1038/35015000. [Google Scholar]
- Smyth, W, Nash J, Moum J. 2019. Self-organized criticality in geophysical turbulence. Sci Rep 9 (1): 3747. https://doi.org/10.1038/s41598-019-39869-w. [Google Scholar]
- Song, K, Meziane K, Kashcheyev A, Jayachandran PT. 2021. Multifrequency observation of high latitude scintillation: A comparison with the phase screen model. IEEE Trans Geosci Rem Sens 60: 1–9. https://doi.org/10.1109/TGRS.2021.3113778. [Google Scholar]
- Sornette, D. 2009. Probability distributions in complex systems. In: Encyclopedia of Complexity and Systems Science, RA, Meyers, (Ed.), Springer, New York, NY, pp. 7009–7024. https://doi.org/10.1007/978-0-387-30440-3_418. [Google Scholar]
- Sorriso-Valvo, L, Carbone V, Veltri P, Consolini G, Bruno R. 1999. Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophy Res Lett 26 (13): 1801–1804. https://doi.org/10.1029/1999GL900270. [Google Scholar]
- Spicher, A, Miloch W, Clausen L, Moen J. 2015. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket. J Geophys Res Space Phys 120 (12): 10–959. https://doi.org/10.1002/2015JA021634. [Google Scholar]
- Spicher, A, Miloch W, Moen J. 2014. Direct evidence of double-slope power spectra in the high-latitude ionospheric plasma. Geophy Res Lett 41 (5): 1406–1412. https://doi.org/10.1002/2014GL059214. [Google Scholar]
- Spilker Jr, JJ, Axelrad P, Parkinson BW, Enge P. 1996. Global positioning system: theory and applications, Vol. I. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.866388. [Google Scholar]
- Sreenivasan, KR. 1999. Fluid turbulence. Rev Mod Phys 71 (2): 383. https://doi.org/10.1103/RevModPhys.71.S383. [Google Scholar]
- Stanley, HE. 1999. Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev Mod Phys 71 (2): 358. https://doi.org/10.1103/RevModPhys.71.S358. [Google Scholar]
- Stolle, C, Luhr H, Rother M, Balasis G. 2006. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res Space Phys 111 (A2): A02304. https://doi.org/10.1029/2005JA011184. [Google Scholar]
- Stolle, C, Siddiqui TA, Schreiter LF, Das SK, Rusch I, Rother M. 2024. An empirical model of the occurrence rate of low latitude post-sunset plasma irregularities derived from CHAMP and Swarm magnetic observations. Space Weather 22(6): e2023SW003809. https://doi.org/10.1029/2023SW003809. [Google Scholar]
- Tanna, H, Pathak K. 2014. Multifractality due to long-range correlation in the L-band ionospheric scintillation S 4 index time series. Astrophys Space Sci 350: 47–56. https://doi.org/10.1007/s10509-013-1742-5. [Google Scholar]
- Taylor, GI. 1938. The spectrum of turbulence. Proc R Soc Lond A Math Phys Sci 164 (919): 476–490. https://doi.org/10.1098/rspa.1938.0032. [Google Scholar]
- Tessier, Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S. 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res Atmos 101 (D21): 26427–26440. https://doi.org/10.1029/96JD01799. [Google Scholar]
- Tritton, DJ. 2012. Physical fluid dynamics. Springer Science & Business Media. https://doi.org/10.1007/97894-009-9992-3. [Google Scholar]
- Uritsky, VM, Paczuski M, Davila JM, Jones SI. 2007. Coexistence of self-organized criticality and intermittent turbulence in the solar corona. Phys Rev Lett 99 (2): 025001. https://doi.org/10.1103/PhysRevLett.99.025001. [Google Scholar]
- Van Den IJssel, J, Encarnacao J, Doornbos E, Visser P. 2015. Precise science orbits for the Swarm satellite constellation. Adv Space Res 56 (6): 1042–1055. https://doi.org/10.1016/j.asr.2015.06.002. [Google Scholar]
- Vankadara, RK, Jamjareegulgarn P, Seemala GK, Siddiqui MIH, Panda SK. 2023. Trailing equatorial plasma bubble occurrences at a low-latitude location through multi-GNSS slant TEC depletions during the strong geomagnetic storms in the ascending phase of the 25th solar cycle. Rem Sens 15 (20): 4944. https://doi.org/10.3390/rs15204944. [Google Scholar]
- Wanliss, J, Weygand J. 2007. Power law burst lifetime distribution of the SYM-H index. Geophy Res Lett 34 (4): L04107. https://doi.org/10.1029/2006GL028235. [Google Scholar]
- Wanliss, JA, Showalter KM. 2006. High-resolution global storm index: Dst versus SYM-H. J Geophys Res Space Phys 111 (A2): A02202. https://doi.org/10.1029/2005JA011034. [Google Scholar]
- Warhaft, Z. 2000. Passive scalars in turbulent flows. Ann Rev Fluid Mech 32 (1): 203–240. https://doi.org/10.1146/annurev.fluid.32.1.203. [Google Scholar]
- Wawrzaszek, A, Macek WM. 2010. Observation of the multifractal spectrum in solar wind turbulence by Ulysses at high latitudes. J Geophys Res Space Phys 115 (A7): A07104. https://doi.org/10.1029/2009JA015176. [Google Scholar]
- White, EP, Enquist BJ, Green JL. 2008. On estimating the exponent of power-law frequency distributions. Ecology 89 (4): 905–912. https://doi.org/10.1890/07-1288.1. [Google Scholar]
- Xiong, C, Stolle C, Luhr H. 2016. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14 (8): 563–577. https://doi.org/10.1002/2016SW001439. [Google Scholar]
- Yaghoubi, M, de Graaf T, Orlandi JG, Girotto F, Colicos MA, Davidsen J. 2018. Neuronal avalanche dynamics indicates different universality classes in neuronal cultures. Sci Rep 8 (1): 3417. https://doi.org/10.1038/s41598-018-21730-1. [Google Scholar]
- Yeh, K, Liu C, Youakim M. 1975. A theoretical study of the ionospheric scintillation behavior caused by multiple scattering. Radio Sci 10 (1): 97–106. https://doi.org/10.1029/RS010i001p00097. [Google Scholar]
- Zakharenkova, I, Astafyeva E, Cherniak I. 2016. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planet Space 68 (1): 1–11. https://doi.org/10.1186/s40623-016-0490-5. [Google Scholar]
- Zhang, X, Le G, Zhang Y. 2012. Phase relationship between the relative sunspot number and solar 10.7 cm flux. Chin Sci Bull 57: 2078–2082. https://doi.org/10.1007/s11434-012-5104-4. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.