Open Access
Issue |
J. Space Weather Space Clim.
Volume 15, 2025
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2025025 | |
Published online | 29 July 2025 |
- Andrews DG, McIntyre MG. 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J Atmos Sci 33: 2031–2048, https://doi.org/10.1175/1520-0469(1976)033≤2031:PWIHAV≥2.0.CO;2. [Google Scholar]
- Alfonsi L, Cesaroni C, Hernandez-Pajares M, Astafyeva E, Bufféral S, et al. 2024. Ionospheric response to the 2020 Samos earthquake and tsunami. Earth Planets Space 76: 13. https://doi.org/10.1186/s40623-023-01940-2. [Google Scholar]
- Astafyeva E. 2019. Ionospheric detection of natural hazards. Rev Geophys 57: 1265–1288. https://doi.org/10.1029/2019RG000668. [CrossRef] [Google Scholar]
- Azeem I, Barlage M. 2018. Atmosphere-ionosphere coupling from convectively generated gravity waves. Adv Space Res 61: 1931–1941. https://doi.org/10.1016/j.asr.2017.09.029. [Google Scholar]
- Barta V, Scotto C, Pietrella M, Sgrigna V, Conti L, Sátori G. 2013. A statistical analysis on the relationship between thunderstorms and the sporadic E Layer over Rome. Astron Nachr 334(9): 968–971. https://doi.org/10.1002/asna.201211972. [Google Scholar]
- Barta V, Haldoupis C, Sátori G, Buresova D, Chum J, et al. 2017. Searching for effects caused by thunderstorms in midlatitude sporadic E layers. J Atm Solar-Terr Phys 161: 150–159. https://doi.org/10.1016/j.jastp.2017.06.006. [Google Scholar]
- Becker E, Goncharenko L, Harvey VL, Vadas SL. 2022. Multi-step vertical coupling during the January 2017 sudden stratospheric warming. J Geophys Res: Space Physics 127: e2022JA030866. https://doi.org/10.1029/2022JA030866. [Google Scholar]
- Borchevkina O, Karpov I, Karpov M. 2020. Meteorological storm influence on the ionosphere parameters. Atmosphere 11: 1017. https://doi.org/10.3390/atmos11091017. [Google Scholar]
- Bruyninx C, Legrand J, Fabian A, Pottiaux E. 2019. GNSS metadata and data validation in the EUREF Permanent Network. GPS Solut 23: 106. https://doi.org/10.1007/s10291-019-0880-9. [Google Scholar]
- Cervera MA, Harris TJ. 2014. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves. J. Geophys. Res. Space Physics 119: 431–440. https://doi.org/10.1002/2013JA019247. [Google Scholar]
- Conway ED. 1997. An introduction to satellite image interpretation, Johns Hopkins University Press, Baltimore, USA. ISBN 9780801855771. https://doi.org/10.56021/9780801855764. [Google Scholar]
- Cosgrove RB, Tsunoda RT, Fukao S, Yamamoto M. 2004. Coupling of the Perkins instability and the sporadic E layer instability derived from physical arguments. J Geophys Res 109(A6): A06301. https://doi.org/10.1029/2003JA010295. [Google Scholar]
- Chum J, Podolská K. 2018. 3D analysis of GW propagation in the ionosphere. Geophys Res Lett 45(21): 11562–11571. https://doi.org/10.1029/2018GL079695. [Google Scholar]
- Chum J, Podolská K, Rusz J, Baše J, Tedoradze N. 2021. Statistical investigation of gravity wave characteristics in the ionosphere. Earth Planets Space 73: 60. https://doi.org/10.1186/s40623-021-01379-3. [Google Scholar]
- Daubechies I, Lu J, Wu H-T. 2011. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmonic Anal 30(2): 243–261. https://doi.org/10.1016/j.acha.2010.08.002. [Google Scholar]
- Davis CJ, Johnson CG. 2005. Lightning-induced intensification of the ionospheric sporadic E layer. Nature 435: 799–801. https://doi.org/10.1038/nature03638. [Google Scholar]
- Eckermann SD, Preusse P. 1999. Global measurements of stratospheric mountain waves from space. Science 286: 1534–1537. https://doi.org/10.1126/science.286.5444.1534. [Google Scholar]
- Ejiri MK, Taylor MJ, Nakamura T, Franke SJ. 2009. Critical level interaction of a gravity wave with background winds driven by a large-scale wave perturbation. J Geophys Res 114: D18117. https://doi.org/10.1029/2008JD011381. [Google Scholar]
- Figueiredo CAOB, Takahashi CAOB, Wrasse CM, Otsuka Y, Shiokawa K, Barros D. 2018. Medium‐scale traveling ionospheric disturbances observed by detrended total electron content maps over Brazil. J Geophys Res Space Phys 123(3): 2215–2227. https://doi.org/10.1002/2017JA025021. [Google Scholar]
- Frissell NA, Baker JBH, Ruohoniemi JM, Greenwald RA, Gerrard AJ, Miller ES, West ML. 2016. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector. J Geophys Res Space Phys 121(4): 3722–3739. https://doi.org/10.1002/2015JA022168. [CrossRef] [Google Scholar]
- Fritts DC. 1989. A review of gravity wave saturation processes, effects, and variability in the middle atmosphere. Pure Appl Geophys 130(2–3): 343–371. https://doi.org/10.1007/bf00874464. [Google Scholar]
- Fritts DC. 1984. Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev Geophys 22: 275–308. https://doi.org/10.1029/RG022i003p00275. [Google Scholar]
- Fritts DC, Alexander MJ. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41: 1003. https://doi.org/10.1029/2001RG000106. [Google Scholar]
- Fritts DC, Nastrom GD. 1992. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J Atmos Sci 49(2): 111–127. https://doi.org/10.1175/1520-0469(1992)049≤0111:SOMVOG≥2.0.CO;2. [Google Scholar]
- Fritts DC, Rastogi PK. 1985. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: theory and observations. Radio Sci 20(6): 1247–1277. https://doi.org/10.1029/RS020i006p01247. [Google Scholar]
- Fuller-Rowell TJ. 1995. The dynamics of the lower thermosphere. In: The upper mesosphere and lower thermosphere: a review of experiment and theory, vol. 87, Johnson RM, Killeen TL (Eds), Washington, DC, American Geophysical Union, pp. 23–36. https://doi.org/10.1029/GM087p0023. [Google Scholar]
- Garcia RR, Solomon S. 1985. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res 90(D2): 3850–3868. https://doi.org/10.1029/JD090iD02p03850. [Google Scholar]
- Guerra M, Cesaroni C, Ravanelli M, Spogli L. 2024. Travelling ionospheric disturbances detection: a statistical study of detrending techniques, induced period error and near real-time observables. J Space Weather Space Clim 14: 17. https://doi.org/10.1051/swsc/2024017. [CrossRef] [EDP Sciences] [Google Scholar]
- Guest FM, Reeder MJ, Marks CJ, Karoly DJ. 2000. Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J Atmos Sci 57: 737–752. https://doi.org/10.1175/1520-0469(2000)057≤0737:IGWOIT≥2.0.CO;2. [Google Scholar]
- Haralambous H, Guerra M, Chum J, Verhulst TG, Barta V, et al. 2023. Multi‐instrument observations of various ionospheric disturbances caused by the 6 February 2023 Turkey earthquake. J Geophys Res Space Phys 128(12): e2023JA031691. https://doi.org/10.1029/2023JA031691. [CrossRef] [Google Scholar]
- Hertzog A, Boccara G, Vincent RA, Vial F, Cocquerez P. 2008. Estimation of gravity wave momentum flux and phase speeds from quasi-lagrangian stratospheric balloon flights. Part II: results from the Vorcore Campaign in Antarctica. J Atmos Sci 65: 3056–3070. https://doi.org/10.1175/2008JAS2710.1. [Google Scholar]
- Hines CO. 1965. Dynamical heating of the upper atmosphere. J Geophys Res 70(1): 177–183. https://doi.org/10.1029/JZ070i001p00177. [Google Scholar]
- Hines CO, Reddy CA. 1967. On the propagation of atmospheric gravity waves through regions of wind shear. J Geophys Res 72: 1015–1034. https://doi.org/10.1029/JZ072i003p01015. [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Hoffmann L, Xue X, Alexander MJ. 2013. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J Geophys Res: Atmos 118(2): 416–434. https://doi.org/10.1029/2012JD018658. [Google Scholar]
- Holton JR. 1982. The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci 39: 791–799. https://doi.org/10.1175/1520-0469(1982)039≤0791:TROGWI≥2.0.CO;2. [Google Scholar]
- Holton JR. 1983. The dynamics of large atmospheric motions. Rev Geophys Space Phys 21(5): 1021–1027. https://doi.org/10.1029/RG021i005p01021. [Google Scholar]
- Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L. 1995. Stratosphere-troposphere exchange. Rev Geophys 33(4): 403–439. https://doi.org/10.1029/95RG02097. [Google Scholar]
- Holton JR, Alexander J. 1999. Gravity waves in the mesosphere generated by tropospheric convection. Tellus A Dyn Meteorol Oceanogr 51(1): 45–58. https://doi.org/10.3402/tellusa.v51i1.12305. [Google Scholar]
- Hooke WH. 1970. The ionospheric response to internal gravity waves: 1. The F2 region response. J Geophys Res 75(28): 5535–5544. https://doi.org/10.1029/JA075i028p05535. [Google Scholar]
- Hooke WH. 1971. Quasi-stagnation levels in the ion motion induced by internal, atmospheric gravity waves at ionospheric heights. J Geoph Res 76(1): 248–249. https://doi.org/10.1029/JA076i001p00248. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys 20: 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Kallio EI, Pulkkinen TI, Koskinen HEJ, Viljianen A, Slavin JA, Ogilvie K. 2000. Loading-unloading processes in the nightside ionosphere. Geophys Res Lett 27: 1627–1630. https://doi.org/10.1029/1999GL003694. [Google Scholar]
- Kauristie K, Pulkkinen TI, Pellinen RJ, Opgenoorth HJ. 1996. What can we tell about auroral electrojet activity from a single meridional magnetometer chain? Ann Geophys 14: 1177–1185. https://doi.org/10.1007/s00585-996-1177-1. [Google Scholar]
- Kil H, Paxton LJ. 2017. Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by Swarm satellites. Geophys Res Lett 44: 9176–9182. https://doi.org/10.1002/2017GL074750. [CrossRef] [Google Scholar]
- Kim Y-J, Eckermann SD, Chun H-Y. 2003. An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos Ocean 41(1): 65–98. https://doi.org/10.3137/ao.410105. [Google Scholar]
- Kotake N, Otsuka Y, Tsugawa T, Ogawa T, Saito A. 2006. Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances. J Geophys Res 111: A04306. https://doi.org/10.1029/2005JA011418. [Google Scholar]
- Koucká Knížová P, Podolská K, Potužníková K, Kouba D, Mošna Z, Boška J, Kozubek M. 2020. Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Ann Geophys 38: 73–93. https://doi.org/10.5194/angeo-38-73-2020. [Google Scholar]
- Koucká Knížová P, Laštovička J, Kouba D, Mošna Z, Podolská K, Potužníková K, Šindelářová T, Chum J, Rusz J. 2021. Ionosphere influenced from lower-lying atmospheric regions. Front Astro Space Sci 8: 651445. https://doi.org/10.3389/fspas.2021.651445. [Google Scholar]
- Koucká Knížová P, Potužníková K, Podolská K, Hannawald P, Mošna Z, Kouba D, Chum J, Wüst S, Bittner M, Kerum J. 2023. Multi-instrumental observation of mesoscale tropospheric systems in July 2021 with a potential impact on ionospheric variability in midlatitudes. Front Astron Space Sci 10: 1197157. https://doi.org/10.3389/fspas.2023.1197157. [Google Scholar]
- Koucká Knížová P, Potužníková K, Podolská K, Šindelářová T, Bozóki T, et al. 2024. Impacts of storm “Zyprian” on middle and upper atmosphere observed from Central European Stations. Rem Sens 16(22): 4388. https://doi.org/10.3390/rs16224338. [Google Scholar]
- Lane TP, Reeder MJ. 2001. Convectively generated gravity waves and their effect on the cloud environment. J Atmos Sci 58(16): 2427–2440. https://doi.org/10.1175/1520-0469(2001)058≤2427:CGGWAT≥2.0.CO;2. [Google Scholar]
- Lane TP, Doyle JD, Plougonven R, Shapiro MA, Sharman RD. 2004. Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J Atmos Sci 61: 2692–2706. https://doi.org/10.1175/JAS3305.1. [Google Scholar]
- Lane TP, Sharman RD. 2006. Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys Res Lett 33: L23813. https://doi.org/10.1029/2006GL027988. [Google Scholar]
- Laštovička J. 2006. Forcing of the ionosphere by waves from below. J Atmos Sol Terr Phys 68: 479–497. https://doi.org/10.1016/j.jastp.2005.01.018. [Google Scholar]
- Laryunin O. 2021. Studying characteristics of traveling ionospheric disturbances using U-shaped traces on vertical incidence ionograms. Adv Space Res 67(3): 1085–1089. [Google Scholar]
- Lindzen RS. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86(C10): 9707–9714. https://doi.org/10.1029/JC086iC10p09707. [Google Scholar]
- Lou Y, Luo X, Gu S, Xiong C, Song Q, Chen B, Xiao Q, Chen D, Zhang Z, Zheng G. 2019. Two typical ionospheric irregularities associated with the tropical cyclones Tembin (2012) and Hagibis (2014). J Geophys Res: Space Phys 124: 6237–6252. https://doi.org/10.1029/2019JA026861. [Google Scholar]
- Makela JJ, Otsuka Y. 2012. Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci Rev 168: 419–440. https://doi.org/10.1007/s11214-011-9816-6. [Google Scholar]
- Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. https://doi.org/10.1029/97RS02707. [CrossRef] [Google Scholar]
- Martinis C, Baumgardner J, Wroten J, Mendillo M. 2010. Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo.Geophys Res Lett 37(11): L11103. https://doi.org/10.1029/2010GL043569. [Google Scholar]
- Medeiros AF, Taylor MJ, Takahashi H, Batista PP, Gobbi D. 2003. An investigation of gravity wave activity in the low-latitude upper mesosphere: Propagation direction and wind filtering. J Geophys Res 108(14): 4411. https://doi.org/10.1029/2002JD002593. [Google Scholar]
- Medvedev AS, Yiğit E. 2019. Gravity waves in planetary atmospheres: their effects and parameterization in global circulation models. Atmosphere 10: 531. https://doi.org/10.3390/atmos10090531. [NASA ADS] [CrossRef] [Google Scholar]
- Miyoshi Y, Fujiwara H. 2008. Gravity waves in the thermosphere simulated by a general circulation model. J Geophys Res 113(D1): D01101. https://doi.org/10.1029/2007JD008874. [Google Scholar]
- Miyoshi Y, Fujiwara H, Jin H, Shinagawa H. 2014. A global view of gravity waves in the thermosphere simulated by a general circulation model. J Geophys Res Space Physics 119(7): 5807–5820. https://doi.org/10.1002/2014JA019848. [Google Scholar]
- Nastrom GD, Fritts DC. 1992. Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J Atmos Sci 49(2): 101–110. https://doi.org/10.1175/1520-0469(1992)049≤0101:SOMVOG≥2.0.CO;2. [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Solar Terr Phys 70(15): 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015. [Google Scholar]
- Otsuka Y. 2021. Medium-scale traveling ionospheric disturbances. In: Ionosphere dynamics and applications. Geophysical Monograph Series 18, Huang C, Lu G, Zhang Y, Paxton LJ (Eds), American Geophysical Union, pp. 421–437. ISBN 9781119815617. https://doi.org/10.1002/9781119815617.ch18. [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31: 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Paznukhov VV, Galushko VG, Reinisch BW. 2012. Digisonde observations of AGWs/TIDs with frequency and angular sounding technique. Adv Space Res 49(4): 700–710. https://doi.org/10.1016/j.asr.2011.11.012. [CrossRef] [Google Scholar]
- Plougonven R, Teitelbaum H, Zeitlin V. 2003. Inertia-gravity wave generation by the tropospheric mid-latitude jet as given by the FASTEX radio soundings. J Geophys Res 108(21): 4686. https://doi.org/10.1029/2003JD003535. [Google Scholar]
- Plougonven R, Zhang F. 2014. Internal gravity waves from atmospheric jets and fronts. Rev. Geophys 52(1): 33–76. https://doi.org/10.1002/2012RG000419. [Google Scholar]
- Reinisch B, Galkin I, Belehaki A, Paznukhov V, Huang X, et al. 2018. Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci 53: 365–378. https://doi.org/10.1002/2017RS006263. [CrossRef] [Google Scholar]
- Sato K, Yamamori M, Ogino SY, Takahashi N, Tomikawa Y, Yamanouchi T. 2003. A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). J Geophys Res Atmos 108(D16): 4491. https://doi.org/10.1029/2002JD003219. [Google Scholar]
- Saito S, Yamamoto M, Hashiguchi H. 2008. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system. Ann Geophys 26: 2345–2352. https://doi.org/10.5194/angeo-26-2345-2008. [Google Scholar]
- Šauli P, Boška J. 2001. Tropospheric events and possible related gravity wave activity effects on the ionosphere. J Atm Sol Terr Phys 63: 945–950. https://doi.org/10.1016/S1364-6826(00)00205-4. [Google Scholar]
- Šauli P, Roux S, Abry P, Boška J. 2007. Acoustic-gravity waves during solar eclipses: detection and characterisation using wavelet transforms. J Atm Sol Terr Phys 69: 2465–2484. https://doi.org/10.1016/j.jastp.2007.06.012. [Google Scholar]
- Schafer RW. 2011. What is a Savitzky-Golay Filter? IEEE Signal Process Mag 28(4): 111–117. https://doi.org/10.1109/MSP.2011.941097. [Google Scholar]
- Setvák M, Lindsey DT, Rabin RM, Wang PK, Demeterová A. 2008. Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: meteosat Second Generation satellite observations and radiative transfer model simulations. Atmos Res 89: 170–180. https://doi.org/10.1016/j.atmosres.2007.11.031. [Google Scholar]
- Setvák M, Lindsey DT, Novák P, Wang PK, Radová M, et al. 2010. Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos Res 97: 80–96. https://doi.org/10.1016/j.atmosres.2010.03.009. [Google Scholar]
- Shiokawa K, Otsuka Y, Ihara C, Ogawa T, Rich FJ. 2003. Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J Geophys Res 108: 1145. https://doi.org/10.1029/2002JA009639. [CrossRef] [Google Scholar]
- Shpynev BG, Khabituev DS, Chernigovskaya MA, Zorkal’tseva OS. 2019. Role of winter jet stream in the middle atmosphere energy balance. J Atm Sol Terr Phys 188: 1–10. https://doi.org/10.1016/j.jastp.2019.03.008. [Google Scholar]
- Sindelarova T, Buresova D, Chum J, Hruska F. 2009. Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv Space Res 43: 1644–1651. https://doi.org/10.1016/j.asr.2008.08.022. [Google Scholar]
- Sivakandan M, Martinis C, Otsuka Y, Chau JL, Norrell J, et al. 2022. On the role of E-F region coupling in the generation of nighttime MSTIDs during summer and equinox: case studies over northern Germany. J Geophys Res: Space Phys 127: e2021JA030159. https://doi.org/10.1029/2021JA030159. [Google Scholar]
- Sivakandan M, Otsuka Y, Ghosh P, Shinagawa H, Shinbori A, Miyoshi Y. 2021. Comparison of seasonal and longitudinal variation of daytime MSTID activity using GPS observation and GAIA simulations. Earth Planets Space 73: 35. https://doi.org/10.1186/s40623-021-01369-5. [Google Scholar]
- Sivakandan M, Taori A, Sathishkumar S, Jayaraman A. 2015. Multi-instrument investigation of a mesospheric gravity wave event absorbed into background. J Geophys Res Space Phys 120: 3150–3159. https://doi.org/10.1002/2014JA020896. [Google Scholar]
- Smith RB. 1985. On severe downslope winds. J Atmos Sci 42(23): 2597–2603. https://doi.org/10.1175/1520-0469(1985)042≤2597:OSDW≥2.0.CO;2. [Google Scholar]
- Surowiecki A, Pilguj N, Taszarek M, Piasecki K, Púčik T, Brooks HE. 2024. Quasi-linear convective systems and derechos across Europe: climatology, accompanying hazards, and societal impacts. Bull Am Meteorol Soc , 105: E1619–E1643. https://doi.org/10.1175/BAMS-D-23-0257.1. [Google Scholar]
- Tanskanen EI, Viljanen A, Pulkkinen TI, Pirjola R, Häkkinen L, Pulkkinen A, Amm O. 2001. At substorm onset, 40% of AL comes from underground. J Geophys Res Space Phys 106(A7): 13119–13134. https://doi.org/10.1029/2000JA900135. [Google Scholar]
- Uccelini LW, Koch SE. 1987. The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon Weather Rev 115: 721–729. https://doi.org/10.1175/1520-0493(1987)115≤0721:TSSAPE≥2.0.CO;2. [Google Scholar]
- Vadas SL, Fritts DC. 2005. Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J Geophys Res 110: D15103. https://doi.org/10.1029/2004JD005574. [Google Scholar]
- Vadas SL. 2007. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112: A06305. https://doi.org/10.1029/2006JA011845. [Google Scholar]
- Vadas SL, Fritts DC. 2009. Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann Geophys 27: 147–177. https://doi.org/10.5194/angeo-27-147-2009. [CrossRef] [Google Scholar]
- Vadas SL, Liu HL. 2009. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves. J Geophys Res 114: A10310. https://doi.org/10.1029/2009JA014108. [Google Scholar]
- Vadas SL, Taylor MJ, Pautet P-D, Stamus P, Fritts DC, Liu H-L, Sao Sabbas FT, Rampinelli VT, Batista P, Takahashi H. 2009. Convection: The likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann Geophys 27: 231–259. https://doi.org/10.5194/angeo-27-231-2009. [Google Scholar]
- Vadas SL, Nicolls MJ. 2012. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory. J Geophys Res 117: A05322. https://doi.org/10.1029/2011JA017426. [Google Scholar]
- Vadas SL, Zhao J, Chu X, Becker E. 2018. The excitation of secondary gravity waves from local body forces: theory and observation. J Geophys Res Atmosph 123: 9296–9325. https://doi.org/10.1029/2017JD027970. [Google Scholar]
- Verhulst T, Altadill D, Mielich J, Reinisch B, Galkin I, et al. 2017. Vertical and oblique HF sounding with a network of synchronized ionosondes. Adv Space Res 60: 1644–1656. https://doi.org/10.1016/j.asr.2017.06.033. [CrossRef] [Google Scholar]
- Verhulst TGW, Altadill D, Barta V, Belehaki A, Burešová D, et al. 2022. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J Space Weather Space Clim 12: 35. https://doi.org/10.1051/swsc/2022032. [CrossRef] [EDP Sciences] [Google Scholar]
- Viljanen A, Hakkinen L. 1997. IMAGE magnetometer network. In: Satellite-ground based coordination sourcebook, ESP-1198, Lockwood M, Wild MN, Opgenoorth HJ (Eds), ESA Publications, ESTEC, Noordwijk, The Netherlands, pp. 111–117. Bibcode: 1997ESASP1198..111V. ISBN 9290923911. [Google Scholar]
- Vincent RA, Alexander MJ. 2000. Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. J Geophys Res Atmos 105(D14): 17971–17982. https://doi.org/10.1029/2000JD900196. [Google Scholar]
- Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M, Sato K. 2008. General aspects of a T213L256 middle atmosphere general circulation model. J Geophys Res 113: D12110. https://doi.org/10.1029/2008JD010026. [Google Scholar]
- Wautelet G, Warnant R. 2015. Origin of high-frequency TEC disturbances observed by GPS over the European mid-latitude region. J Atm Solar-Terr Phys 133: 67–78. https://doi.org/10.1016/j.jastp.2015.08.003. [Google Scholar]
- Wei J, Zhang F. 2014. Mesoscale gravity waves in moist baroclinic jet–front systems. J Atmos Sci 71: 929–952. https://doi.org/10.1175/JAS-D-13-0171.1. [Google Scholar]
- Whiteway JA, Duck TJ. 1996. Evidence for critical level filtering of atmospheric gravity waves. Geophys Res Lett 23(2): 145–148. https://doi.org/10.1029/95gl03784. [Google Scholar]
- Xu S, Yue J, Xue X, Vadas SL, Miller SD, et al. 2019. Dynamical coupling between hurricane Matthew and the middle to upper atmosphere via gravity waves. J Geophys Res Space Phys 124: 3589–3608. https://doi.org/10.1029/2018JA026453. [Google Scholar]
- Yiğit E, Medvedev AS. 2015. Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55(4): 983–1003. https://doi.org/10.1016/j.asr.2014.11.020. [Google Scholar]
- Yiğit E, Koucká Knížová P, Georgieva K, Ward W. 2016. A review of vertical coupling in the Atmosphere–Ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J Atm Solar-Terr Phys 141: 1–12. https://doi.org/10.1016/j.jastp.2016.02.011. [Google Scholar]
- Yue J, Vadas SL, She C-Y, Nakamura T, Reising SC, Liu H-L, Stamus P, Krueger DA, Lyons W, Li T. 2009. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J Geophys Res 114: D06104. https://doi.org/10.1029/2008JD011244. [Google Scholar]
- Yue J, Perwitasari S, Xu S, Hozumi Y, Nakamura T, Sakanoi T, Saito A, Miller SD, Straka W, Rong P. 2019. Preliminary dual-satellite observations of atmospheric gravity waves in airglow. Atmosphere 10: 650. https://doi.org/10.3390/atmos10110650. [Google Scholar]
- Zhang F, Koch SE, Kaplan ML. 2003. Numerical simulations of a large-amplitude mesoscale gravity wave event. Meteorol Atmos Phys 84: 199–216. https://doi.org/10.1007/s00703-002-0594-2. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.